常用排序算法

一、冒泡排序
/**
* 冒泡排序
* 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
* 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
* 针对所有的元素重复以上的步骤,除了最后一个。
* 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
* @param numbers 需要排序的整型数组
*/
public static void bubbleSort(int[] numbers)
{
int temp = 0;
int size = numbers.length;
for(int i = 0 ; i < size-1; i ++)
{
for(int j = 0 ;j < size-1-i ; j++)
{
if(numbers[j] > numbers[j+1]) //交换两数位置
{
temp = numbers[j];
numbers[j] = numbers[j+1];
numbers[j+1] = temp;
}
}
}
}

二、快排
/**
* 查找出中轴(默认是最低位low)的在numbers数组排序后所在位置
*
* @param numbers 带查找数组
* @param low 开始位置
* @param high 结束位置
* @return 中轴所在位置
*/
public static int getMiddle(int[] numbers, int low,int high)
{
int temp = numbers[low]; //数组的第一个作为中轴
while(low < high)
{
while(low < high && numbers[high] > temp)
{
high--;
}
numbers[low] = numbers[high];//比中轴小的记录移到低端
while(low < high && numbers[low] < temp)
{
low++;
}
numbers[high] = numbers[low] ; //比中轴大的记录移到高端
}
numbers[low] = temp ; //中轴记录到尾
return low ; // 返回中轴的位置
}

/**
*
* @param numbers 带排序数组
* @param low 开始位置
* @param high 结束位置
*/
public static void quickSort(int[] numbers,int low,int high)
{
if(low < high)
{
  int middle = getMiddle(numbers,low,high); //将numbers数组进行一分为二
  quickSort(numbers, low, middle-1); //对低字段表进行递归排序
  quickSort(numbers, middle+1, high); //对高字段表进行递归排序
}

}


/**
* 快速排序
* @param numbers 带排序数组
*/
public static void quick(int[] numbers)
{
if(numbers.length > 0) //查看数组是否为空
{
quickSort(numbers, 0, numbers.length-1);
}
}


三、归并

/**
* 归并排序
* 简介:将两个(或两个以上)有序表合并成一个新的有序表 即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列
* 时间复杂度为O(nlogn)
* 稳定排序方式
* @param nums 待排序数组
* @return 输出有序数组
*/
public static int[] sort(int[] nums, int low, int high) {
int mid = (low + high) / 2;
if (low < high) {
// 左边
sort(nums, low, mid);
// 右边
sort(nums, mid + 1, high);
// 左右归并
merge(nums, low, mid, high);
}
return nums;
}

/**
* 将数组中low到high位置的数进行排序
* @param nums 待排序数组
* @param low 待排的开始位置
* @param mid 待排中间位置
* @param high 待排结束位置
*/
public static void merge(int[] nums, int low, int mid, int high) {
int[] temp = new int[high - low + 1];
int i = low;// 左指针
int j = mid + 1;// 右指针
int k = 0;

// 把较小的数先移到新数组中
while (i <= mid && j <= high) {
if (nums[i] < nums[j]) {
temp[k++] = nums[i++];
} else {
temp[k++] = nums[j++];
}
}

// 把左边剩余的数移入数组
while (i <= mid) {
temp[k++] = nums[i++];
}

// 把右边边剩余的数移入数组
while (j <= high) {
temp[k++] = nums[j++];
}

// 把新数组中的数覆盖nums数组
for (int k2 = 0; k2 < temp.length; k2++) {
nums[k2 + low] = temp[k2];
}
}

四、堆排

public class HeapSort {
public static void main(String[] args) {
int[] a={49,38,65,97,76,13,27,49,78,34,12,64};
int arrayLength=a.length;
//循环建堆
for(int i=0;i<arrayLength-1;i++){
//建堆
buildMaxHeap(a,arrayLength-1-i);
//交换堆顶和最后一个元素
swap(a,0,arrayLength-1-i);
System.out.println(Arrays.toString(a));
}
}
//对data数组从0到lastIndex建大顶堆
public static void buildMaxHeap(int[] data, int lastIndex){
//从lastIndex处节点(最后一个节点)的父节点开始
for(int i=(lastIndex-1)/2;i>=0;i--){
//k保存正在判断的节点
int k=i;
//如果当前k节点的子节点存在
while(k*2+1<=lastIndex){
//k节点的左子节点的索引
int biggerIndex=2*k+1;
//如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
if(biggerIndex<lastIndex){
//若果右子节点的值较大
if(data[biggerIndex]<data[biggerIndex+1]){
//biggerIndex总是记录较大子节点的索引
biggerIndex++;
}
}
//如果k节点的值小于其较大的子节点的值
if(data[k]<data[biggerIndex]){
//交换他们
swap(data,k,biggerIndex);
//将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
k=biggerIndex;
}else{
break;
}
}
}
}
//交换
private static void swap(int[] data, int i, int j) {
int tmp=data[i];
data[i]=data[j];
data[j]=tmp;
}
}

posted @ 2018-03-23 11:17  dtdxrk  阅读(166)  评论(0编辑  收藏  举报