Natural Language Generation/Abstractive Summarization

调研目的:

了解生成式文本摘要的常用技术和当前的发展趋势,明确当前项目有什么样的摘要需求,判断现有技术能否用于满足当前的需求,进一步明确毕业设计方向及其可行性

调研方向:

  • 项目中需要用到摘要的地方以及区别
  • 数据集(研究用评测集/项目用大规模数据集)
  • 现有技术
    • 分类
      • 有监督
      • 无监督
      • 半监督等(如果有)
    • 效果
    • 优势和缺点
  • 评价现有技术用于当前项目的可行性
  • 扩展:寻找现有技术的研究改进方向

项目中用到摘要的地方

  • 传统新闻摘要任务
    • 单/多文档新闻摘要生成
  • 非传统摘要任务
    • 标题生成
    • 特点
      • 篇幅一般较短
      • 不同位置的内容对摘要没有影响
      • 观点可能包含多种(受限于聚类效果),相当于噪声数据

评价方法

  • 自动评价方法: Rouge
    • 基于N元模型,判断生成的摘要与参考摘要N元组重复比例
    • 自动评价方法本身也是被研究的对象
  • 人工评价方法
    • 由人对摘要内容进行打分,包括可读性、综合质量等。

数据集

  • LCSTS
    • 哈工大中文微博摘要数据集
    • 数据集内容
      • part1: 2.4m训练数据, (短文本,摘要)对
      • part2: 1w标注数据,给摘要和短文本的相关程度打分(1~5),用来去除part1中的噪声数据
      • part3: 1.1k对训练数据,独立于part1&2,由3人对摘要打分,一般保留3分以上的作为摘要训练数据
    • 数据量非常大,噪声非常大
  • DUC2004/Gigaword
    • 抽取式摘要数据集
    • 单句话摘要
  • CNN/Daily Mail
    • 生成式摘要数据集
    • 摘要包含多个句子,但是长度不是太长

思路

  • Seq2seq + Attention(RNN->CNN)
  • Pointer/Generation、CopyNet机制,以及其它的机制
  • Extractor + Abstractor
  • Reinforcement Learning
  • GAN、unsupervised learning

General

  • Category: text-to-text, data-to-text, image/video-to-text
  • Tasks:
    • Content determination 确定生成内容
    • Text structuring 确定生成结构
    • Sentence aggregation 句子聚合
    • Lexicalisation 词法实现
    • Referring expression generation 指代生成
    • Linguistic realisation 语言实现
  • Example:
    • snow.jpg
    • 有一个穿红衣服的小孩子,在雪地里堆雪人。
  • Example:
    • 高铁车票“无纸化”
      近日,中国铁路总公司...
      乘客或可实现“刷手机”、“刷身份证”直接进站乘车,而不需要在乘车之前特意换取纸质车票。...
      最快今年四季度,中国铁路电子客票业务将开展试点运营。
      ...
    • 最快今年四季度,乘客可直接刷手机或身份证直接进站乘坐高铁火车。

Text-to-Text

  • Document Summarization(abstractive)
    • Systems: NeATS, NewsBlaster, NewsInEssence, Summly
    • Evaluation: ROUGE
    • Tasks:
    • Category:
      • single/multi document summarization
    • Seq-to-Seq
      • attention mechanism
      • copying mechanism: 考虑到摘要中的很多字和原文相同,拷贝机制允许直接拷贝输入中的字作为输出,而不是总是通过隐层状态来生成字。
      • Reinforcement Learning: 直接通过Rouge来进行优化比decoder输出的结果的似然函数来优化效果更好
      • limit length
  • Sentence Compression & Fusion
    • few researches
  • Paraphrase Generation
    • few researches

Data-to-Text

Image/Video-to-Text

posted @ 2018-07-25 10:55  |浅お唱|≮  阅读(479)  评论(0编辑  收藏  举报