Math teacher's homework 题解

preface

网上的题解看不懂,看代码看懂了 :)

solution

考虑 \(\mathrm{x_i}\) 的倒数第 \(\mathrm{low_i - 1}\) 位到倒数第 \(\mathrm{1}\) 位可以乱选(选 \(\mathrm{0/1}\) 都满足 \(\mathrm{x_i \leq m_i}\)),那么就需要 \(\mathrm{x_i}\)\(\mathrm{m_i}\) 的第 \(\mathrm{1}\) 位到倒数第 \(\mathrm{low_i + 1}\) 位都一样,然后 \(\mathrm{m_i}\) 倒数第 \(\mathrm{low_i}\) 位为 \(\mathrm{1}\)\(\mathrm{x_i}\) 倒数第 \(\mathrm{low_i}\) 位为 \(\mathrm{0}\)

\(\mathrm{k}\) 一共有 \(\mathrm{cnt}\) 位。

\(\mathrm{dp[i][j][k]}\) 表示考虑前 \(\mathrm{i}\)\(\mathrm{x}\) 的取值,\(\mathrm{low_l}\) 的最大值为 \(\mathrm{j}\) (即前 \(\mathrm{j - 1}\) 位目前是确定的,因为\(\mathrm{x_{d} (1 \leq d \leq i)}\) 的前 \(\mathrm{j - 1}\) 位都顶到上届,第 \(\mathrm{j}\) 位为 \(0\)\(\mathrm{low_d = j}\)) 或者 \(\mathrm{1}\)\(\mathrm{low_d < j}\))),第 \(\mathrm{j}\) 位的异或值为 \(\mathrm{k}\) (就是记录这确定的前 \(\mathrm{j}\) 位的第 \(\mathrm{j}\) 位为零还是一,因为前 \(\mathrm{j - 1}\) 位我们可以直接算)。

转移就是考虑 \(\mathrm{x_i}\)\(\mathrm{d}\) 位都顶着上届,然后值得注意为了最后能等于 \(\mathrm{k}\),倒数 \(\mathrm{j}\) 位都必须留下一位来调整使这一位等于 \(\mathrm{k}\) 的这一位,所以最终答案要除以 \(\mathrm{2^{j}}\),当然也可以在过程中计算。

还有一种情况是选择 \(\mathrm{m_i}\),要特殊考虑,我调了好久 :(。

//我看着,天真的我自己
#include <map>
#include <set>
#include <cmath>
#include <stack>
#include <queue>
#include <cstdio> 
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define fi first
#define se second
#define MP(x,y) make_pair (x, y)
#define PII pair <int, int>
#define db double
#define LL long long
#define ULL unsigned long long
#define rep(i,j,k) for (int i = (j); i <= (k); i++)
#define per(i,j,k) for (int i = (j); i >= (k); i--)

template <typename T> T Max (T x, T y) { return x > y ? x : y; }
template <typename T> T Min (T x, T y) { return x < y ? x : y; }
template <typename T> T Abs (T x) { return x > 0 ? x : -x; }
template <typename T>
void read (T &x) {
	x = 0; bool fl_for_x = 1;
	char ch = getchar ();
	while (ch < '0' || ch > '9') {
		if (ch == '-') fl_for_x = 0;
		ch = getchar ();
	}
	while (ch >= '0' && ch <= '9') {
		x = (x << 3) + (x << 1) + ch - '0';
		ch = getchar ();
	}
	if (!fl_for_x) x = -x;
}
template <typename T, typename... Args>
void read (T &x, Args&... args) {
	read (x), read (args...);
}
const int Maxn_For_Print = 30;
int Tp_For_Print, St_For_Print[Maxn_For_Print + 5];
template <typename T>
void write (T x) {
	if (x == 0) {
		putchar ('0');
		return;
	}
	if (x < 0) {
		x = -x;
		putchar ('-');
	}
	while (x) {
		St_For_Print[++Tp_For_Print] = x % 10;
		x /= 10;
	}
	while (Tp_For_Print) {
		putchar (St_For_Print[Tp_For_Print--] + '0');
	}
}
template <typename T>
void print (T x, char ch) {
	write (x), putchar (ch);
}

const int Maxn = 50;
const int Maxk = 31;
const LL Mod = 1e9 + 3;

int n, k;
int a[Maxn + 5];

LL f[Maxn + 5][Maxk + 5][2];
bool vis[Maxn + 5][Maxk + 5][2];
LL dfs (int step, int low, int val) {
	//step 表示考虑 x[step] 的取值,low表示第一位到倒数第low位需要有数去修正,val表示需要修正的值(即之前的异或和)
	//只保留第 low 位及之前的
	val = val & (~((1 << low) - 1));
    //如果全部都算完了,要求确定的 low 位之前的不需要调整也等于 k 的 low 位之前的数
	if (step == n + 1) return !val;
	if (vis[step][low][val >> low & 1]) return f[step][low][val >> low & 1];

	LL res = 0, tmp = 0;
	per (i, Maxk, 0) {
		//前 i 位顶着上届
		if (a[step] >> i & 1) {
			//第 i 位为 0,后面的乱选
			//如果 i > low,那么 [low, i] 这几位就无法自己决定为 0 / 1,就是 solution 里为了最终异或值为 k 最后用来调整的那几位不能自由选,所以要比 Min (low, i)。
			res = (res + dfs (step + 1, Max (low, i), val ^ tmp) * ((1ll << Min (low, i)) % Mod) % Mod) % Mod;
			tmp |= (1 << i);
		}
	}
	//都顶着上届,就是选择 m[i]
	res = (res + dfs (step + 1, low, val ^ tmp)) % Mod;
	f[step][low][val >> low & 1] = res, vis[step][low][val >> low & 1] = 1;
	return res;
}

signed main () {
	freopen ("C:\\Users\\Administrator\\Desktop\\lihan\\1.in", "r", stdin);
	freopen ("C:\\Users\\Administrator\\Desktop\\lihan\\1.out", "w", stdout);
//	freopen ("transport.in", "r", stdin);
//	freopen ("transport.out", "w", stdout);

	while (1) {
		memset (f, 0, sizeof f);
		memset (vis, 0, sizeof vis);
		read (n, k);
		if (!(n + k)) break;
		rep (i, 1, n)
			read (a[i]);
		print (dfs (1, 0, k), '\n');
	}
	return 0;
}
posted @ 2023-10-16 22:20  C2022lihan  阅读(16)  评论(0编辑  收藏  举报