两只繁殖场狗狗如何度过她的九年

∑ i = 1 2 n − 1 ( n f i ) = ∑ i = 1 n ( n i ) 2 n − i = ∑ i = 1 n ( n i ) 2 n − i 组 合 意 义 , 3 种 颜 色 染 色 。 = 3 n − 2 n \begin{aligned} \sum_{i = 1}^{2^n - 1} \binom{n}{f_i} &= \sum_{i = 1}^{n} \binom{n}{i} 2^{n - i} \\ &= \sum_{i = 1}^{n} \binom{n}{i}2^{n - i} \\ &组合意义,3种颜色染色。 \\ &= 3^{n} - 2^{n} \end{aligned} i=12n1(fin)=i=1n(in)2ni=i=1n(in)2ni3=3n2n
∑ i = 1 n ( n i ) 2 n − i = ∑ i = 0 n − 1 ( n i ) 2 i = − 2 n + ∑ i = 0 n ( n i ) 2 i = − 2 n + ( 2 + 1 ) n = − 2 n + 3 n = 3 n − 2 n \begin{aligned} \sum_{i = 1}^{n} \binom{n}{i}2^{n - i} &= \sum_{i = 0}^{n - 1} \binom{n}{i} 2^i \\ &= -2^{n} + \sum_{i = 0}^{n} \binom{n}{i}2^i \\ &= -2^{n} + (2+1)^{n} \\ &= -2^{n} + 3^{n} \\ &= 3^n - 2^n \end{aligned} i=1n(in)2ni=i=0n1(in)2i=2n+i=0n(in)2i=2n+(2+1)n=2n+3n=3n2n

∑ i = 1 2 n − 1 g i f i ( n f i ) = ∑ i = 1 n 2 n − i ( 2 i − 1 ) ( n i ) i = ∑ i = 1 n \begin{aligned} \sum_{i = 1}^{2^n - 1} g_i f_i \binom{n}{f_i} &= \sum_{i = 1}^{n} 2^{n - i} (2^{i} - 1) \binom{n}{i} i \\ &= \sum_{i = 1}^{n} \end{aligned} i=12n1gifi(fin)=i=1n2ni(2i1)(in)i=i=1n

posted @ 2022-03-07 15:02  C2022lihan  阅读(9)  评论(0编辑  收藏  举报