Number Challenge

引理 1 1 1
d ( i ⋅ j ) = ∑ x ∣ i ∑ y ∣ j [ gcd ⁡ ( x , y ) = 1 ] d (i \cdot j) = \sum_{x \mid i} \sum_{y \mid j} [\gcd (x,y) = 1] d(ij)=xiyj[gcd(x,y)=1]

证明:

一对满足要求的 x , y x, y x,y 可以构造出 x j y x \frac{j}{y} xyj 作为 i j ij ij 的因数。

考虑 i j ij ij 的质因子 p p p

gcd ⁡ ( x , y ) = 1 \gcd (x, y) = 1 gcd(x,y)=1 表示都在 j j j 里取出 p p p 这个因子,只有在 j j j p p p 这个因子被取空后才能拿 i i i 里的 p p p 这个因子,所以不会出现类似于从 i i i 里取出一个 p p p 再从 j j j 取出一个 p p p 和从 j j j 里取出两个 p p p 这两种等价方案都算了一次的情况。

引理 2 2 2:

d ( i ⋅ j ⋅ k ) = ∑ x ∣ i ∑ y ∣ j ∑ z ∣ k [ g c d ( x , y ) = g c d ( y , z ) = g c d ( x , z ) = 1 ] d (i \cdot j \cdot k) = \sum_{x \mid i} \sum_{y \mid j} \sum_{z \mid k} [gcd (x, y) = gcd (y, z) = gcd (x, z) = 1] d(ijk)=xiyjzk[gcd(x,y)=gcd(y,z)=gcd(x,z)=1]

证明:类似于引理 1 1 1


化式子

∑ i = 1 a ∑ j = 1 b ∑ k = 1 c d ( i ⋅ j ⋅ k ) ∑ i = 1 a ∑ j = 1 b ∑ k = 1 c ∑ u ∣ i ∑ v ∣ j ∑ w ∣ k [ g c d ( u , v ) = g c d ( u , w ) = g c d ( v , w ) = 1 ] ∑ u = 1 a ∑ v = 1 b ∑ w = 1 c ⌊ a u ⌋ ⌊ b v ⌋ ⌊ c w ⌋ [ g c d ( u , v ) = g c d ( u , w ) = g c d ( v , w ) = 1 ] ∑ u = 1 a ∑ v = 1 b ∑ w = 1 c ⌊ a u ⌋ ⌊ b v ⌋ ⌊ c w ⌋ ∑ d ∣ g c d ( u , v ) μ ( d ) [ g c d ( u , w ) = g c d ( v , w ) = 1 ] ∑ u = 1 a ∑ v = 1 b ∑ w = 1 c ⌊ a u ⌋ ⌊ b v ⌋ ⌊ c w ⌋ ∑ d ∣ u , d ∣ v μ ( d ) [ g c d ( u , w ) = g c d ( v , w ) = 1 ] ∑ d μ ( d ) ∑ u = 1 ⌊ a d ⌋ ∑ v = 1 ⌊ b d ⌋ ∑ w = 1 c ⌊ a u d ⌋ ⌊ b v d ⌋ ⌊ c w ⌋ [ g c d ( u d , w ) = g c d ( v d , w ) = 1 ] ∑ d μ ( d ) ∑ w = 1 c ⌊ c w ⌋ ∑ u = 1 ⌊ a d ⌋ ⌊ a u d ⌋ [ g c d ( u d , w ) = 1 ] ∑ v = 1 ⌊ b d ⌋ ⌊ b v d ⌋ [ g c d ( v d , w ) = 1 ] \begin{aligned} \sum_{i = 1}^{a} \sum_{j = 1}^{b} \sum_{k = 1}^{c} d (i \cdot j \cdot k) \\ \sum_{i = 1}^{a} \sum_{j = 1}^{b} \sum_{k = 1}^{c} \sum_{u \mid i} \sum_{v \mid j} \sum_{w \mid k} [gcd (u, v) = gcd (u, w) = gcd (v, w ) = 1] \\ \sum_{u = 1}^{a} \sum_{v = 1}^{b} \sum_{w = 1}^{c} \lfloor \frac{a}{u} \rfloor \lfloor \frac{b}{v} \rfloor \lfloor \frac{c}{w} \rfloor [gcd (u, v) = gcd (u, w) = gcd (v, w ) = 1] \\ \sum_{u = 1}^{a} \sum_{v = 1}^{b} \sum_{w = 1}^{c} \lfloor \frac{a}{u} \rfloor \lfloor \frac{b}{v} \rfloor \lfloor \frac{c}{w} \rfloor \sum_{d \mid gcd (u, v)} \mu (d) [gcd (u, w) = gcd (v, w ) = 1] \\ \sum_{u = 1}^{a} \sum_{v = 1}^{b} \sum_{w = 1}^{c} \lfloor \frac{a}{u} \rfloor \lfloor \frac{b}{v} \rfloor \lfloor \frac{c}{w} \rfloor \sum_{d \mid u, d \mid v} \mu (d) [gcd (u, w) = gcd (v, w) = 1] \\ \sum_{d} \mu (d) \sum_{u = 1}^{\lfloor \frac{a}{d} \rfloor} \sum_{v = 1}^{\lfloor \frac{b}{d} \rfloor} \sum_{w = 1}^{c} \lfloor \frac{a}{ud} \rfloor \lfloor \frac{b}{vd} \rfloor \lfloor \frac{c}{w} \rfloor [gcd (ud, w) = gcd (vd, w) = 1] \\ \sum_{d} \mu (d) \sum_{w = 1}^{c} \lfloor \frac{c}{w} \rfloor \sum_{u = 1}^{\lfloor \frac{a}{d} \rfloor} \lfloor \frac{a}{ud} \rfloor [gcd (ud, w) = 1] \sum_{v = 1}^{\lfloor \frac{b}{d} \rfloor} \lfloor \frac{b}{vd} \rfloor [gcd (vd, w) = 1] \end{aligned} i=1aj=1bk=1cd(ijk)i=1aj=1bk=1cuivjwk[gcd(u,v)=gcd(u,w)=gcd(v,w)=1]u=1av=1bw=1cuavbwc[gcd(u,v)=gcd(u,w)=gcd(v,w)=1]u=1av=1bw=1cuavbwcdgcd(u,v)μ(d)[gcd(u,w)=gcd(v,w)=1]u=1av=1bw=1cuavbwcdu,dvμ(d)[gcd(u,w)=gcd(v,w)=1]dμ(d)u=1dav=1dbw=1cudavdbwc[gcd(ud,w)=gcd(vd,w)=1]dμ(d)w=1cwcu=1dauda[gcd(ud,w)=1]v=1dbvdb[gcd(vd,w)=1]


q r y 1 ( d , w ) = ∑ u = 1 ⌊ a d ⌋ ⌊ a u d ⌋ [ g c d ( u d , w ) = 1 ] , q r y 2 ( d , w ) = ∑ v = 1 ⌊ b d ⌋ ⌊ b v d ⌋ [ g c d ( v d , w ) = 1 ] qry1 (d, w) = \sum_{u = 1}^{\lfloor \frac{a}{d} \rfloor} \lfloor \frac{a}{ud} \rfloor [gcd (ud, w) = 1], qry2 (d, w) = \sum_{v = 1}^{\lfloor \frac{b}{d} \rfloor} \lfloor \frac{b}{vd} \rfloor [gcd (vd, w) = 1] qry1(d,w)=u=1dauda[gcd(ud,w)=1]qry2(d,w)=v=1dbvdb[gcd(vd,w)=1]
直接暴力求 q r y 1 , q r y 2 qry1, qry2 qry1,qry2 的时间复杂度为 O ( n 5 2 ) O (n ^ {\frac{5}{2}}) O(n25) (令 a , b , c , n a, b, c, n a,b,c,n 同阶)

证明:

d ≤ a d \leq \sqrt {a} da 时, 1 ≤ w , u ≤ a 1 \leq w, u \leq a 1w,ua,这部分时间复杂度为 O ( n 5 2 ) O (n ^ {\frac{5}{2}}) O(n25)

d > a d > \sqrt {a} d>a 时, 1 ≤ w ≤ a , 1 ≤ ⌊ a d ⌋ ≤ s q r t ( a ) 1 \leq w \leq a, 1\leq \lfloor \frac{a}{d} \rfloor \leq sqrt (a) 1wa,1dasqrt(a),这部分时间复杂度为 O ( n 5 2 ) O (n ^ {\frac{5}{2}}) O(n25)


又是推错的一些没用的式子
∑ i = 1 a ∑ j = 1 b ∑ k = 1 c d ( i j k ) ∑ i = 1 a ∑ j = 1 b ∑ k = 1 c ∑ d ∣ i j k 1 ∑ i = 1 a ∑ j = 1 b ∑ d ∑ k = 1 , d ∣ i j k c 1 ∑ i = 1 a ∑ j = 1 b ∑ d ⌊ c d gcd ⁡ ( d , i j ) ⌋ ∑ i = 1 a ∑ j = 1 b ∑ d ⌊ c ⋅ gcd ⁡ ( d , i j ) d ⌋ ∑ i = 1 a ∑ g ∑ d ⌊ c ⋅ g d ⌋ ∑ j = 1 b [ gcd ⁡ ( d , i j ) = g ] ∑ i = 1 a ∑ g ∑ d ⌊ c ⋅ g d ⌋ ∑ j = 1 b [ gcd ⁡ ( d g , i j g ) = 1 ] ∑ g ∑ d ⌊ c ⋅ g d ⌋ ∑ t ∑ i = 1 , i ∣ t a [ gcd ⁡ ( d g , t g ) = 1 ] \begin{aligned} \sum_{i = 1}^{a}\sum_{j = 1}^{b} \sum_{k = 1}^{c} d (ijk) \\ \sum_{i = 1}^{a}\sum_{j = 1}^{b} \sum_{k = 1}^{c} \sum_{d \mid ijk} 1 \\ \sum_{i = 1}^{a}\sum_{j = 1}^{b} \sum_{d} \sum_{k = 1, d \mid ijk}^{c} 1 \\ \sum_{i = 1}^{a}\sum_{j = 1}^{b} \sum_{d} \lfloor \frac{c}{\frac{d}{\gcd (d, ij)}} \rfloor \\ \sum_{i = 1}^{a}\sum_{j = 1}^{b} \sum_{d} \lfloor \frac{c \cdot \gcd (d, ij)}{d} \rfloor \\ \sum_{i = 1}^{a} \sum_{g} \sum_{d} \lfloor \frac{c \cdot g}{d} \rfloor \sum_{j = 1}^{b}[\gcd (d, ij) = g] \\ \sum_{i = 1}^{a} \sum_{g} \sum_{d} \lfloor \frac{c \cdot g}{d} \rfloor \sum_{j = 1}^{b}[\gcd (\frac{d}{g}, \frac{ij}{g}) = 1] \\ \sum_{g} \sum_{d} \lfloor \frac{c \cdot g}{d} \rfloor \sum_{t} \sum_{i = 1, i \mid t}^{a} [\gcd (\frac{d}{g}, \frac{t}{g}) = 1] \end{aligned} i=1aj=1bk=1cd(ijk)i=1aj=1bk=1cdijk1i=1aj=1bdk=1,dijkc1i=1aj=1bdgcd(d,ij)dci=1aj=1bddcgcd(d,ij)i=1agddcgj=1b[gcd(d,ij)=g]i=1agddcgj=1b[gcd(gd,gij)=1]gddcgti=1,ita[gcd(gd,gt)=1]

posted @ 2022-07-15 10:11  C2022lihan  阅读(12)  评论(0编辑  收藏  举报