[2020.10.17]——习题的数学证明

1.证明:任意奇数的平方减1是8的倍数

设这个奇数为 2 k + 1 ( k ∈ Z ) 2k + 1 (k \in Z) 2k+1(kZ),则

( 2 k + 1 ) 2 − 1 (2k + 1) ^ 2 - 1 (2k+1)21
= 4 k 2 + 4 k + 1 − 1 = 4k ^ 2 + 4k + 1 - 1 =4k2+4k+11
= 4 k 2 + 4 k = 4k ^ 2 + 4k =4k2+4k
= 4 k ( k + 1 ) = 4k (k + 1) =4k(k+1)

k   m o d   2 = 1 k \bmod 2 = 1 kmod2=1
k + 1   m o d   2 = 0 k + 1 \bmod 2 = 0 k+1mod2=0
所以 8 ∣ 4 ( k + 1 ) 8 \mid 4(k + 1) 84(k+1)
所以 8 ∣ 4 k ( k + 1 ) 8 \mid 4k (k + 1) 84k(k+1)

k   m o d   2 = 0 k \bmod 2 = 0 kmod2=0
同理可得: 8 ∣ 4 k 8 \mid 4k 84k
所以 8 ∣ 4 k ( k + 1 ) 8 \mid 4k (k + 1) 84k(k+1)

综上所述: 8 ∣ 4 k ( k + 1 ) 8 \mid 4k (k + 1) 84k(k+1)
即证


2.证明:

(1)当 2 ∣ n 2 \mid n 2n时, 2 ∣ 3 n + 1 2 \mid 3 ^ n + 1 23n+1

因 为 3 n ≡ 1 n ( m o d 2 ) 因为3 ^ n \equiv 1 ^ n \pmod 2 3n1n(mod2)
又 ∵ 1 n + 1 ≡ 0 ( m o d 2 ) 又∵1 ^ n + 1 \equiv 0 \pmod 2 1n+10(mod2)
∴ 3 n + 1 ≡ 0 ( m o d 2 ) ∴3 ^ n + 1 \equiv 0 \pmod 2 3n+10(mod2)
即 2 ∣ 3 n + 1 即2 \mid 3 ^ n + 1 23n+1
即证

(2)当 n ≡ 1 ( m o d 2 ) n \equiv 1 \pmod 2 n1(mod2) 2 2 ∣ 3 n + 1 2 ^ 2 \mid 3 ^ n + 1 223n+1

T i = 3 i + 1 T_i = 3 ^ i + 1 Ti=3i+1
T i = ( T i − 2 − 1 ) × 9 + 1 T_i = (T_{i - 2} - 1) \times 9 + 1 Ti=(Ti21)×9+1
4 ∣ T i − 2 4 \mid T_{i - 2} 4Ti2
⇒ T i   m o d   4 = ( ( ( T i − 2   m o d   4 ) − ( 1   m o d   4 ) ) × 9   m o d   4 + 1 )   m o d   4 \Rightarrow T_i \bmod 4 = (((T_{i - 2} \bmod 4) - (1 \bmod 4)) \times 9 \bmod 4 + 1) \bmod 4 Timod4=(((Ti2mod4)(1mod4))×9mod4+1)mod4
⇒ T i   m o d   4 = [ ( 0 − 1 ) × 9   m o d   4 + 1 ]   m o d   4 \Rightarrow T_i \bmod 4 = [(0 - 1) \times 9 \bmod 4 + 1] \bmod 4 Timod4=[(01)×9mod4+1]mod4
⇒ T i   m o d   4 = ( 3 + 1 )   m o d   4 \Rightarrow T_i \bmod 4 = (3 + 1) \bmod 4 Timod4=(3+1)mod4
⇒ T i   m o d   4 = 0 \Rightarrow T_i \bmod 4 = 0 Timod4=0
⇒ 4 ∣ T i \Rightarrow 4 \mid Ti 4Ti
又 ∵ 4 ∣ T 1 又∵4 \mid T1 4T1
所以 4 ∣ T i ( i ≡ 1 ( m o d 2 ) ) 4 \mid T_i (i \equiv 1 \pmod 2) 4Ti(i1(mod2))

即证

(3)对于任意正整数 α ( α > 2 ) \alpha(\alpha>2) α(α>2),都有 2 α ∤ 3 n + 1 2 ^ \alpha \nmid 3 ^ n + 1 2α3n+1

posted @ 2020-10-17 10:30  C2022lihan  阅读(64)  评论(0编辑  收藏  举报