bsgs整理

bsgs问题 或 poj2417:

给定质数\(p\),给定\(a\),\(b\),\((a,p)=1\)
求出最小的整数x,使得\(a^{x}≡b(mod p)\)

概述

由费马小定理可以知道
\(a^{x+p-1}≡a^{x}≡b(mod p)\)
所以如果有解那\([0,p-1]\)区间内一定会出现解
\(m=sqrt(p)\)
\(x\)可以表示为\(m*i-j\)
\(m,i,j\)都是在根号规模的
\(a^{m*i-j}≡b(mod p)\)
\(\frac{a^{m*i}}{a^{j}}≡b(mod p)\)
\(a^{m*i}≡b*a^{j}(mod p)\)
右边\(hash\)表(一般都用stl的map)存在所有的j取值
左边暴力枚举i(因为是-j,所以从1枚举,要不然就成负数了,找出来的就不一定是最小解)
如果\(a^{m*i}\)在hash表中存在,那就有解,也是最小解,结束吧
如果根号范围内还没有解,那就真的没解
算法思想:分块
算法缺陷:p是质数
算法复杂度\(\sqrt{n}\)
\(map\)常数也许很高

代码

#include <iostream>
#include <cmath>
#include <map>
#include <cstdio>
#define ll long long
using namespace std;
ll a,b,p;
map<ll,ll> hasH;
int main() {
	while(scanf("%lld%lld%lld",&p,&a,&b)!=EOF) {
		ll m=floor(sqrt(p));
		hasH.clear();
		ll tmp=1;
		hasH[b]=1;
		for(ll i=1;i<=m;++i) tmp=tmp*a%p,hasH[tmp*b%p]=i+1;
		ll xx=tmp,i=1,ans=-1;
		for(;i<=m;++i) {
			if(hasH[xx]) {ans=m*i%p-(hasH[xx]-1);break;}
			xx=xx*tmp%p;
		}
		if(ans==-1) puts("no solution");
		else printf("%d\n",ans);
	}
	return 0;
}

exbsgs

咕咕咕咕

鸣谢 \(gzy gzy gzy\)

posted @ 2019-02-04 21:02  ComplexPug  阅读(121)  评论(0编辑  收藏  举报