【转】Memcached安装
解析:Memcached是什么?
Memcached是由Danga Interactive开发的,高性能的,分布式的内存对象缓存系统,用于在动态应用中减少数据库负载,提升访问速度。
一、软件版本
libevent 稳定版
wget http://monkey.org/~provos/libevent-1.4.14b-stable.tar.gz
memcached 稳定版
wget http://memcached.googlecode.com/files/memcached-1.4.5.tar.gz
二、软件安装
Libevent安装
[root@jw-test01 software]# tar zxvf libevent-1.4.14b-stable.tar.gz
[root@jw-test01 software]# cd libevent-1.4.14b-stable
[root@jw-test01 libevent]# ./configure --prefix=/usr/local/libevent/
[root@jw-test01 libevent]# make
[root@jw-test01 libevent]# make install
Memcached安装
[root@jw-test01 software]# tar -zxvf memcached-1.4.5.tar.gz
[root@jw-test01 software]# cd memcached-1.4.5
[root@jw-test01 memcached]# ./configure --prefix=/usr/local/memcached --with-libevent=/usr/local/libevent/
[root@jw-test01 memcached]# make
[root@jw-test01 memcached]# make install
三、编写Memcached启动脚本
#!/bin/bash
# author:kuangl
# date:2013-05-30
# description: Starts and stops the Memcached services.
# pidfile: /tmp/memcached1.pid
# config: /usr/local/memcached
# chkconfig: - 55 45
# source function library
. /etc/rc.d/init.d/functions
memcached="/usr/local/memcached/bin/memcached"
[ -e $memcached ] || exit 1
start()
{
echo "Starting memcached:"
daemon $memcached -d -m 1000 -u root -l 127.0.0.1 -p 11211 -c 1500 -P /tmp/memcached1.pid
}
stop()
{
echo "Shutting down memcached"
killproc memcached
}
case "$1" in
start)
start
;;
stop)
stop
;;
restart)
stop
sleep 3
start
;;
*)
echo $"Usage: $0 {start|stop|restart}"
exit 1
esac
exit $?
四、将脚本复制到init.d目录下
[root@jw-test01 scripts]# cp memcached.sh /etc/init.d/memcached
五、将memcached加入系统启项
[root@jw-test01 scripts]# chkconfig --add memcached
[root@jw-test01 scripts]# chkconfig --level 35 memcached on
六、启动memcached
[root@jw-test01 scripts]# service memcached restart
Shutting down memcached [确定]
Starting memcached: [确定]
[root@jw-test01 scripts]# ps -ef |grep memcached
root
27616 1 0 22:18 ? 00:00:00
/usr/local/memcached/bin/memcached -d -m 1000 -u root -l 127.0.0.1 -p
11211 -c 1500 -P /tmp/memcached1.pid
七、Memcached常用参数
参数 | 说明 |
-p <num> | 设置端口号(默认不设置为: 11211) |
-U <num> | UDP监听端口(默认: 11211, 0 时关闭) |
-l <ip_addr> | 绑定地址(默认:所有都允许,无论内外网或者本机更换IP,有安全隐患,若设置为127.0.0.1就只能本机访问) |
-d | 独立进程运行 |
-u <username> | 绑定使用指定用于运行进程<username> |
-m <num> | 允许最大内存用量,单位M (默认: 64 MB) |
-P <file> | 将PID写入文件<file>,这样可以使得后边进行快速进程终止, 需要与-d 一起使用 |
之前我们讲解了 Linux服务器下Memcache的安装 ,今天详细讲解下Windows和Linux下Memcache的启动参数和监控服务器上的Memcached运行情况的命令stats。
Linux下memcache启动的命令:
memcached -d -m 10 -u root -l 192.168.5.80 -p 11222 -c 256 -P /tmp/memcached.pid
memcache参数说明:
-d选项是启动一个守护进程
-m是分配给Memcache使用的内存数量,单位是MB,我这里是10MB
-u是运行Memcache的用户,我这里是root
-l是监听的服务器IP地址
-p是设置Memcache监听的端口,最好是1024以上的端口
-c选项是最大运行的并发连接数,默认是1024,按照你服务器的负载量来设定
-P是设置保存Memcache的pid文件
windows
memcached的基本 命令(启动、配置相关) :
-p 监听的端口
-l 连接的IP地址, 默认是本机
-d start 启动memcached服务
-d restart 重起memcached服务
-d stop|shutdown 关闭正在运行的memcached服务
-d install 安装memcached服务
-d uninstall 卸载memcached服务
-u 以的身份运行 (仅在以root运行的时候有效)
-m 最大内存使用,单位MB。默认64MB
-M 内存耗尽时返回错误,而不是删除项
-c 最大同时连接数,默认是1024
-f 块大小增长因子,默认是1.25
-n 最小分配空间,key+value+flags默认是48
-h 显示帮助
memcache stats命令
stats 命令的功能正如其名:转储所连接的 memcached 实例的当前统计数据。在下例中,执行stats命令显示了关于当前 memcached 实例的信息:
STAT pid 22459 进程ID
STAT uptime 1027046 服务器运行秒数
STAT time 1273043062 服务器当前unix时间戳
STAT version 1.4.4 服务器版本
STAT pointer_size 64 操作系统(这台服务器是64位的)
STAT rusage_user 0.040000 进程累计用户时间
STAT rusage_system 0.260000 进程累计系统时间
STAT curr_connections 10 当前打开连接数
STAT total_connections 82 曾打开的连接总数
STAT connection_structures 13 服务器分配的连接结构数
STAT cmd_get 54 执行get命令总数
STAT cmd_set 34 执行set命令总数
STAT cmd_flush 3 指向flush_all命令总数
STAT get_hits 9 get命中次数
STAT get_misses 45 get未命中次数
STAT delete_misses 5 delete未命中次数
STAT delete_hits 1 delete命中次数
STAT incr_misses 0 incr未命中次数
STAT incr_hits 0 incr命中次数
STAT decr_misses 0 decr未命中次数
STAT decr_hits 0 decr命中次数
STAT cas_misses 0 cas未命中次数
STAT cas_hits 0 cas命中次数
STAT cas_badval 0 使用擦拭次数
STAT auth_cmds 0
STAT auth_errors 0
STAT bytes_read 15785 读取字节总数
STAT bytes_written 15222 写入字节总数
STAT limit_maxbytes 1048576 分配的内存数(字节)
STAT accepting_conns 1 目前接受的链接数
STAT listen_disabled_num 0
STAT threads 4 线程数
STAT conn_yields 0
STAT bytes 0 存储item字节数
STAT curr_items 0 item个数
STAT total_items 34 item总数
STAT evictions 0 为获取空间删除item的总数
flush_all 这个最简单的命令仅用于清理缓存中的所有名称/值对。
一直在使用Memcache,但是对其内部的问题,如它内存是怎么样被使用的,使用一段时间后想看看一些状态怎么样?一直都不清楚,查了又忘记,现在整理出该篇文章,方便自己查阅。本文不涉及安装、操作。有兴趣的同学可以查看之前写的文章和Google。
1:参数
memcached -h
memcached 1.4.14
-p <num> TCP端口,默认为11211,可以不设置
-U <num> UDP端口,默认为11211,0为关闭
-s <file> UNIX socket
-a <mask> access mask for UNIX socket, in octal (default: 0700)
-l <addr> 监听的 IP 地址,本机可以不设置此参数
-d 以守护程序(daemon)方式运行
-u 指定用户,如果当前为 root ,需要使用此参数指定用户
-m <num> 最大内存使用,单位MB。默认64MB
-M 禁止LRU策略,内存耗尽时返回错误,而不是删除项
-c <num> 最大同时连接数,默认是1024
-v verbose (print errors/warnings while in event loop)
-vv very verbose (also print client commands/reponses)
-vvv extremely verbose (also print internal state transitions)
-h 帮助信息
-i print memcached and libevent license
-P <file> 保存PID到指定文件
-f <factor> 增长因子,默认1.25
-n <bytes> 初始chunk=key+suffix+value+32结构体,默认48字节
-L 启用大内存页,可以降低内存浪费,改进性能
-t <num> 线程数,默认4。由于memcached采用NIO,所以更多线程没有太多作用
-R 每个event连接最大并发数,默认20
-C 禁用CAS命令(可以禁止版本计数,减少开销)
-b Set the backlog queue limit (default: 1024)
-B Binding protocol-one of ascii, binary or auto (default)
-I 调整分配slab页的大小,默认1M,最小1k到128M
上面加粗的参数,需要重点关注,正常启动的例子:
启动:
/usr/bin/memcached -m 64 -p 11212 -u nobody -c 2048 -f 1.1 -I 1024 -d -l 10.211.55.9
连接:
telnet 10.211.55.9 11212
Trying 10.211.55.9...
Connected to 10.211.55.9.
Escape character is '^]'.
可以通过命令查看所有参数:stats settings
2:理解memcached的内存存储机制
Memcached默认情况下采用了名为Slab Allocator的机制分配、管理内存。在该机制出现以前,内存的分配是通过对所有记录简单地进行malloc和free来进行的。但是,这种方式会导致内存碎片,加重操作系统内存管理器的负担,最坏的情况下,会导致操作系统比memcached进程本身还慢。Slab Allocator就是为解决该问题而诞生的。
Slab Allocator的基本原理是按照预先规定的大小,将分配的内存以page为单位,默认情况下一个page是1M,可以通过-I参数在启动时指定,分割成各种尺寸的块(chunk), 并把尺寸相同的块分成组(chunk的集合),如果需要申请内存时,memcached会划分出一个新的page并分配给需要的slab区域。page一旦被分配在重启前不会被回收或者重新分配,以解决内存碎片问题。
Page
分配给Slab的内存空间,默认是1MB。分配给Slab之后根据slab的大小切分成chunk。
Chunk
用于缓存记录的内存空间。
Slab Class
特定大小的chunk的组。
Memcached并不是将所有大小的数据都放在一起的,而是预先将数据空间划分为一系列slabs,每个slab只负责一定范围内的数据存储。memcached根据收到的数据的大小,选择最适合数据大小的slab。memcached中保存着slab内空闲chunk的列表,根据该列表选择chunk,然后将数据缓存于其中。
如图所示,每个slab只存储大于其上一个slab的size并小于或者等于自己最大size的数据。例如:100字节大小的字符串会被存到slab2(88-112)中,每个slab负责的空间是不等的,memcached默认情况下下一个slab的最大值为前一个的1.25倍,这个可以通过修改-f参数来修改增长比例。
Slab Allocator解决了当初的内存碎片问题,但新的机制也给memcached带来了新的问题。chunk是memcached实际存放缓存数据的地方,这个大小就是管理它的slab的最大存放大小。每个slab中的chunk大小是一样的,如上图所示slab1的chunk大小是88字节,slab2是112字节。由于分配的是特定长度的内存,因此无法有效利用分配的内存。例如,将100字节的数据缓存到128字节的chunk中,剩余的28字节就浪费了。这里需要注意的是chunk中不仅仅存放缓存对象的value,而且保存了缓存对象的key,expire time, flag等详细信息。所以当set 1字节的item,需要远远大于1字节的空间存放。
memcached在启动时指定 Growth Factor因子(通过-f选项), 就可以在某种程度上控制slab之间的差异。默认值为1.25。
slab的内存分配具体过程如下:
Memcached在启动时通过-m参数指定最大使用内存,但是这个不会一启动就占用完,而是逐步分配给各slab的。如果一个新的数据要被存放,首先选择一个合适的slab,然后查看该slab是否还有空闲的chunk,如果有则直接存放进去;如果没有则要进行申请,slab申请内存时以page为单位,无论大小为多少,都会有1M大小的page被分配给该slab(该page不会被回收或者重新分配,永远都属于该slab)。申请到page后,slab会将这个page的内存按chunk的大小进行切分,这样就变成了一个chunk的数组,再从这个chunk数组中选择一个用于存储数据。若没有空闲的page的时候,则会对改slab进行LRU,而不是对整个memcache进行LRU。
以上大致讲解了memcache的内存分配策略,下面来说明如何查看memcache的使用状况。
3,memcache状态和性能查看
① 命中率 :stats命令
按照下面的图来解读分析
get_hits表示读取cache命中的次数,get_misses是读取失败的次数,即尝试读取不存在的缓存数据。即:
命中率=get_hits / (get_hits + get_misses)
命中率越高说明cache起到的缓存作用越大。但是在实际使用中,这个命中率不是有效数据的命中率,有些时候get操作可能只是检查一个key存在不存在,这个时候miss也是正确的,这个命中率是从memcached启动开始所有的请求的综合值,不能反映一个时间段内的情况,所以要排查memcached的性能问题,还需要更详细的数值。但是高的命中率还是能够反映出memcached良好的使用情况,突然下跌的命中率能够反映大量cache丢失的发生。
② 观察各slab的items的情况:Stats items命令
主要参数说明:
outofmemory | slab class为新item分配空间失败的次数。这意味着你运行时带上了-M或者移除操作失败 |
number | 存放的数据总数 |
age | 存放的数据中存放时间最久的数据已经存在的时间,以秒为单位 |
evicted | 不得不从LRU中移除未过期item的次数 |
evicted_time | 自最后一次清除过期item起所经历的秒数,即最后被移除缓存的时间,0表示当前就有被移除,用这个来判断数据被移除的最近时间 |
evicted_nonzero | 没有设置过期时间(默认30天),但不得不从LRU中称除该未过期的item的次数 |
因为memcached的内存分配策略导致一旦memcached的总内存达到了设置的最大内存,表示所有的slab能够使用的page都已经固定,这时如果还有数据放入,将导致memcached使用LRU策略剔除数据。而LRU策略不是针对所有的slabs,而是只针对新数据应该被放入的slab,例如有一个新的数据要被放入slab 3,则LRU只对slab 3进行,通过stats items就可以观察到这些剔除的情况。
注意evicted_time:并不是发生了LRU就代表memcached负载过载了,因为有些时候在使用cache时会设置过期时间为0,这样缓存将被存放30天,如果内存满了还持续放入数据,而这些为过期的数据很久没有被使用,则可能被剔除。把evicted_time换算成标准时间看下是否已经达到了你可以接受的时间,例如:你认为数据被缓存了2天是你可以接受的,而最后被剔除的数据已经存放了3天以上,则可以认为这个slab的压力其实可以接受的;但是如果最后被剔除的数据只被缓存了20秒,不用考虑,这个slab已经负载过重了。
通过上面的说明可以看到当前的memcache的slab1的状态:
items有305816个,有效时间最久的是21529秒,通过LRU移除未过期的items有95336839个,通过LRU移除没有设置过期时间的未过期items有95312220个,当前就有被清除的items,启动时没有带-M参数。
③ 观察各slabs的情况:stats slabs命令
从Stats items中如果发现有异常的slab,则可以通过stats slabs查看下该slab是不是内存分配的确有问题。
主要参数说明:
属性名称 | 属性说明 |
---|---|
chunk_size | 当前slab每个chunk的大小 |
chunk_per_page | 每个page能够存放的chunk数 |
total_pages | 分配给当前slab的page总数,默认1个page大小1M,可以计算出该slab的大小 |
total_chunks | 当前slab最多能够存放的chunk数,应该等于chunck_per_page * total_page |
used_chunks | 已经被占用的chunks总数 |
free_chunks | 过期数据空出的chunk但还没有被使用的chunk数 |
free_chunks_end | 新分配的但是还没有被使用的chunk数 |
这里需要注意:total_pages 这个是当前slab总共分配大的page总数,如果没有修改page的默认大小的情况下,这个数值就是当前slab能够缓存的数据的总大小(单位为M)。如果这个slab的剔除非常严重,一定要注意这个slab的page数是不是太少了。还有一个公式:
total_chunks = used_chunks + free_chunks + free_chunks_end
另外stats slabs还有2个属性:
属性名称 | 属性说明 |
active_slabs |
活动的slab总数 |
total_malloced |
实际已经分配的总内存数,单位为byte,这个数值决定了memcached实际还能申请多少内存,如果这个值已经达到设定的上限(和stats settings中的maxbytes对比),则不会有新的page被分配。 |
④ 对象数量的统计:stats sizes
注意:该命令会锁定服务,暂停处理请求。该命令展示了固定chunk大小中的items的数量。也可以看出slab1(96byte)中有多少个chunks。
⑤ 查看、导出key:stats cachedump
在进入memcache中,大家都想查看cache里的key,类似redis中的keys *命令,在memcache里也可以查看,但是需要2步完成。
一是先列出items:
stats items --命令
...
...
STAT items:29:number 228
STAT items:29:age 34935
...
END
二是通过itemid取key,上面的id是29,再加上一个参数:为列出的长度,0为全部列出。
stats cachedump 29 0 --命令
ITEM 26457202 [49440 b; 1467262309 s]
...
ITEM 30017977 [45992 b; 1467425702 s]
ITEM 26634739 [48405 b; 1467437677 s]
END --总共228个key
get 26634739 取value
如何导出key呢?这里就需要通过 echo ... nc 来完成了
echo "stats cachedump 29 0" | nc 10.211.55.9 11212 >/home/zhoujy/memcache.log
在导出的时候需要注意的是:cachedump命令每次返回的数据大小只有2M,这个是memcached的代码中写死的一个数值,除非在编译前修改。
⑥ 另一个监控工具:memcached-tool,一个perl写的工具:memcache_tool.pl。
./memcached-tool 10.211.55.9:11212 --执行 # Item_Size Max_age Pages Count Full? Evicted Evict_Time OOM 1 96B 20157s 28 305816 yes 95431913 0 0 2 120B 16049s 40 349520 yes 117041737 0 0 3 152B 17574s 39 269022 yes 92679465 0 0 4 192B 18157s 43 234823 yes 78892650 0 0 5 240B 18722s 52 227188 yes 72908841 0 0 6 304B 17971s 73 251777 yes 85556469 0 0 7 384B 17881s 81 221130 yes 75596858 0 0 8 480B 17760s 70 152880 yes 53553607 0 0 9 600B 18167s 58 101326 yes 34647962 0 0 10 752B 18518s 52 72488 yes 24813707 0 0 11 944B 18903s 52 57720 yes 16707430 0 0 12 1.2K 20475s 44 38940 yes 11592923 0 0 13 1.4K 21220s 36 25488 yes 8232326 0 0 14 1.8K 22710s 35 19740 yes 6232766 0 0 15 2.3K 22027s 33 14883 yes 4952017 0 0 16 2.8K 23139s 33 11913 yes 3822663 0 0 17 3.5K 23495s 31 8928 yes 2817520 0 0 18 4.4K 22611s 29 6670 yes 2168871 0 0 19 5.5K 23652s 29 5336 yes 1636656 0 0 20 6.9K 21245s 26 3822 yes 1334189 0 0 21 8.7K 22794s 22 2596 yes 783620 0 0 22 10.8K 22443s 19 1786 yes 514953 0 0 23 13.6K 21385s 18 1350 yes 368016 0 0 24 16.9K 23782s 16 960 yes 254782 0 0 25 21.2K 23897s 14 672 yes 183793 0 0 26 26.5K 27847s 13 494 yes 117535 0 0 27 33.1K 27497s 14 420 yes 83966 0 0 28 41.4K 28246s 14 336 yes 63703 0 0 29 51.7K 33636s 12 228 yes 24239 0 0
解释:
列 | 含义 |
# | slab class编号 |
Item_Size | chunk大小 |
Max_age | LRU内最旧的记录的生存时间 |
pages | 分配给Slab的页数 |
count | Slab内的记录数、chunks数、items数、keys数 |
Full? | Slab内是否含有空闲chunk |
Evicted | 从LRU中移除未过期item的次数 |
Evict_Time | 最后被移除缓存的时间,0表示当前就有被移除 |
OOM | -M参数? |
4,总结
实际应用Memcached时,我们遇到的很多问题都是因为不了解其内存分配机制所致,希望本文能让大家初步了解Memcached在内存方便的分配机制,虽然redis等一些nosql的数据库产品在很多产品中替换了memcache,但是memcache还有很多项目会依赖它,所以还得学习来解决问题,后续出现新内容会不定时更新。
5,参考文档