pandas合并merge-【老鱼学pandas】
本节讲述对于两个数据集按照相同列的值进行合并。
首先定义原始数据:
import pandas as pd
import numpy as np
data0 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']
})
data1 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']
})
print("data0:")
print(data0)
print("data1:")
print(data1)
输出为:
data0:
A B key
0 A0 B0 K0
1 A1 B1 K1
2 A2 B2 K2
3 A3 B3 K3
data1:
C D key
0 C0 D0 K0
1 C1 D1 K1
2 C2 D2 K2
3 C3 D3 K3
啥也不做,直接合并:
print(pd.merge(data0, data1))
输出为:
A B key C D
0 A0 B0 K0 C0 D0
1 A1 B1 K1 C1 D1
2 A2 B2 K2 C2 D2
3 A3 B3 K3 C3 D3
默认情况下的合并是根据两个数据集中共同的列拥有相同的值来进行合并的。
我们再举一个例子,大家可以观察下:
import pandas as pd
import numpy as np
data0 = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
'key2': ['K0', 'K1', 'K0', 'K1'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']
})
data1 = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
'key2': ['K0', 'K0', 'K0', 'K0'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']
})
print("data0:")
print(data0)
print("data1:")
print(data1)
print("合并后的数据为:")
print(pd.merge(data0, data1))
输出为:
data0:
A B key1 key2
0 A0 B0 K0 K0
1 A1 B1 K0 K1
2 A2 B2 K1 K0
3 A3 B3 K2 K1
data1:
C D key1 key2
0 C0 D0 K0 K0
1 C1 D1 K1 K0
2 C2 D2 K1 K0
3 C3 D3 K2 K0
合并后的数据为:
A B key1 key2 C D
0 A0 B0 K0 K0 C0 D0
1 A2 B2 K1 K0 C1 D1
2 A2 B2 K1 K0 C2 D2
在merge参数中可以添加how的参数,这个参数默认为inner,可选值有:
left,right,outer,inner。
对于how='outer'
不管key有没有一模一样,都把它们给复制下来,例如:
print(pd.merge(data0, data1, how='outer'))
输出为:
A B key1 key2 C D
0 A0 B0 K0 K0 C0 D0
1 A1 B1 K0 K1 NaN NaN
2 A2 B2 K1 K0 C1 D1
3 A2 B2 K1 K0 C2 D2
4 A3 B3 K2 K1 NaN NaN
5 NaN NaN K2 K0 C3 D3
如果我们设置how='right',则输出结果会以第二个数据集的key为准:
print(pd.merge(data0, data1, how='right'))
输出为:
A B key1 key2 C D
0 A0 B0 K0 K0 C0 D0
1 A2 B2 K1 K0 C1 D1
2 A2 B2 K1 K0 C2 D2
3 NaN NaN K2 K0 C3 D3
indicator
indicator参数用来指示出当前记录的合并方式,例如:
print(pd.merge(data0, data1, indicator=True, how='outer'))
输出:
A B key1 key2 C D _merge
0 A0 B0 K0 K0 C0 D0 both
1 A1 B1 K0 K1 NaN NaN left_only
2 A2 B2 K1 K0 C1 D1 both
3 A2 B2 K1 K0 C2 D2 both
4 A3 B3 K2 K1 NaN NaN left_only
5 NaN NaN K2 K0 C3 D3 right_only
目前,indicator默认的列名为 _merge,如果你看着不爽,可以通过indicator="字段名"的方式来修改这个字段名。
按照index进行合并
前面是通过字段名来进行合并的,但有时我们可以把index看成是一个主键,这样就相当于根据主键进行合并数据,例如:
import pandas as pd
import numpy as np
data0 = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
'key2': ['K0', 'K1', 'K0', 'K1'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']
}, index=["T0", "T1", "T2", "T3"])
data1 = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
'key2': ['K0', 'K0', 'K0', 'K0'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']
},
index=["T0", "T1", "T4", "T5"])
print("data0:")
print(data0)
print("data1:")
print(data1)
print("合并后的数据为:")
print(pd.merge(data0, data1, left_index=True, right_index=True))
输出为:
data0:
A B key1 key2
T0 A0 B0 K0 K0
T1 A1 B1 K0 K1
T2 A2 B2 K1 K0
T3 A3 B3 K2 K1
data1:
C D key1 key2
T0 C0 D0 K0 K0
T1 C1 D1 K1 K0
T4 C2 D2 K1 K0
T5 C3 D3 K2 K0
合并后的数据为:
A B key1_x key2_x C D key1_y key2_y
T0 A0 B0 K0 K0 C0 D0 K0 K0
T1 A1 B1 K0 K1 C1 D1 K1 K0
这里需要同时设置left_index=True, right_index=True
相同列名添加后缀区分
如果我们不加任何后缀的情况下,系统会自动添加_x,_y之类的后缀进行区分,例如:
import pandas as pd
import numpy as np
data0 = pd.DataFrame({'k': ['K0', 'K1', 'K2'],
'age': [1, 2, 3]})
data1 = pd.DataFrame({'k': ['K0', 'K0', 'K3'],
'age': [4, 5, 6]})
print("data0:")
print(data0)
print("data1:")
print(data1)
print("合并后的数据为:")
print(pd.merge(data0, data1, on='k'))
输出为:
data0:
age k
0 1 K0
1 2 K1
2 3 K2
data1:
age k
0 4 K0
1 5 K0
2 6 K3
合并后的数据为:
age_x k age_y
0 1 K0 4
1 1 K0 5
我们可以通过suffixes属性来修改默认的后缀名:
print(pd.merge(data0, data1, on='k', suffixes=['_boy', '_girl']))
输出为:
age_boy k age_girl
0 1 K0 4
1 1 K0 5
作者:dreampursuer(公众号:独立开发者手记)
出处:http://www.cnblogs.com/dreampursuer/
本文版权归作者所有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。
出处:http://www.cnblogs.com/dreampursuer/
本文版权归作者所有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。