dreamlike-zzg

  博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

Understanding Convolution for Semantic Segmentation

1 Jun 2018

thought

1、增加的可学习参数形式上不一定对应,能变换回来就行
2、直觉上的不合理要仔细分析

motivation

1、上采样更好地恢复信息,bilinear upsampling is not learnable, deconvolution zeros have to be padded
2、空洞卷积有 gridding 现象

solution

在这里插入图片描述
dense upsampling convolution (DUC)
增加通道数,将conv恢复的feature加在channel维度上,再reshape到original resolution
论文效果比 deconv 略好
hybrid dilated convolution (HDC)
级联不同 rate 的 dilated conv,覆盖掉 grid
在这里插入图片描述
参考
https://blog.csdn.net/u011974639/article/details/79460893
https://www.cnblogs.com/ansang/p/9003513.html
https://zhuanlan.zhihu.com/p/26659914

posted on 2022-11-05 15:59  梦幻济公  阅读(25)  评论(0编辑  收藏  举报