题目: 给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。
解法一:左闭右闭区间。(left = 0, right = nums.length - 1)
思路:对于这种问题,捕捉到数据类型是数组并且数组中元素是有序的并且是查找类首先想到使用二分查找来解决。首先找到数组的中间值,使用中间值与target进行比较,假如target小于nums[mid]代表target在中间值的左侧,所以我们排除掉一半的数据。之后继续重复之前的做法,逼近target即可。
在左闭右闭的条件下,左边界和右边界都是存在意义的,所以在循环条件中left在小于等于right的情况下都是有意义的。在target小于nums[mid]的情况下,移动右侧边界,right = mid - 1; 因为right是有意义的嘛,nums[mid]已经确实不是target的情况下要使用,right = mid - 1;来缩小范围。反之同理。
代码如下:
点击查看代码
class Solution {
public int search(int[] nums, int target) {
if(nums[nums.length - 1] < target || nums[0] > target) {
return -1;
}
int left = 0;
int right = nums.length - 1;
while(left <= right) {
int mid = (left + right) / 2;
if(nums[mid] == target){
return mid;
}else if(nums[mid] > target) {
right = mid - 1;
}else {
left = mid +1;
}
}
return -1;
}
}
解法二:左闭右开区间。(left = 0, right = nums.length)
思路:总体思路同解法一,但是right变成了开区间,在缩小边界赋值mid时不必对right - 1,使用right就可以了。在循环条件中left也始终小于right.
代码如下:
点击查看代码
class Solution {
public int search(int[] nums, int target) {
if (nums[nums.length - 1] < target || nums[0] > target) {
return -1;
}
int left = 0;
int right = nums.length;
while (left < right) {
int mid = (left + right) / 2;
if (nums[mid] == target) {
return mid;
} else if (nums[mid] > target) {
right = mid;
} else {
left = mid + 1;
}
}
return -1;
}
}