P4550 收集邮票

P4550 收集邮票

题目

题目描述

有 n 种不同的邮票,皮皮想收集所有种类的邮票。唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是 n 种邮票中的哪一种是等概率的,概率均为 1/n。但是由于凡凡也很喜欢邮票,所以皮皮购买第 k 次邮票需要支付 k 元钱。

现在皮皮手中没有邮票,皮皮想知道自己得到所有种类的邮票需要花费的钱数目的期望。

输入格式

一行,一个数字 N(N \le 10000)。

输出格式

输出要付出多少钱,保留二位小数。

输入输出样例

输入 #1

3

输出 #1

21.25

思路

\(f_i\)表示我们有\(i\)种邮票,获得剩下\(n-i\)种邮票所需要的期望购买次数.

显然,有\(f_n=0\).

\[\begin{equation} \begin{aligned} f_i&=\frac{i}{n}f_i+\frac{n-i}nf_{i+1}+1\\ f_i&=f_{i+1}+\frac n{n-i} \end{aligned} \end{equation} \]

\(g_i\)表示我们有\(i\)种邮票,获得剩下\(n-i\)种邮票所需要的期望花费.

同样的,\(g_n=0\).

\[\begin{equation} \begin{aligned} g_i &= \frac in\Big(f_i+g_i+1\Big)+\frac {n-i}n\Big(f_{i+1}+g_{i+1}+1\Big)\\ g_i &=\frac 1{n-i}\Big( i\cdot f_i+i\Big)\cdot \Big(f_{i+1}+g_{i+1}+1 \Big) \end{aligned} \end{equation} \]

答案即\(g_0\).

代码

#include <iostream>
#include <cstdio>
using namespace std;
const int N = 10010;
double f[N] , g[N];
int main() {
	double n;
	cin >> n;
	for(int i = n - 1 ; i >= 0 ; i--) {
		f[i] = f[i + 1] + n / (n - i);
		g[i] = (i * f[i] + i) / (n - i) + (f[i + 1] + g[i + 1] + 1);
	}
	printf("%.2lf" , g[0]);
	return 0;
} 
posted @ 2021-10-14 19:35  追梦人1024  阅读(33)  评论(0编辑  收藏  举报