BZOJ1801 Ahoi2009 chess 中国象棋 【DP+组合计数】*

 

BZOJ1801 Ahoi2009 chess 中国象棋


Description

在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮。 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧.

Input

一行包含两个整数N,M,中间用空格分开.

Output

输出所有的方案数,由于值比较大,输出其mod 9999973

Sample Input

1 3

Sample Output

7

HINT

除了在3个格子中都放满炮的的情况外,其它的都可以.
100%的数据中N,M不超过100
50%的数据中,N,M至少有一个数不超过8
30%的数据中,N,M均不超过6


不难发现每行每列最多只有2个棋子
考虑DP,dpi,j,kdp_{i,j,k}dpi,j,k表示i行中一共有j列有一个,k列有两个
然后我们考虑这一行选多少

  • 当前行不选
    dpi,j,k=dpi−1,j,k
  • 当前行选一个
    • 选原来是0个棋子dp(i,j,k)+=dp(i−1,j−1,k)∗c(n−k−j+1,1)(1≤j)
    • 选原来是1个棋子dp(i,j,k)+=dp(i−1,j+1,k−1)∗c(j+1,1)(1≤k,j≤m−1)
  • 当前行选两个
    • 选两个原来是0的dp(i,j,k)+=dp(i−1,j−2,k)*c(m-j-k+1,2)(2≤j)
    • 选两个原来是1的dp(i,j,k)+=dp(i−1,j+2,k−2)*c(j+2,2)(2≤k,j≤m−2)
    • 选一个是1一个是0 dp(i,j,k)+=dp(i−1,j,k−1)*j*(m-j-k+1)(1≤j,1≤k(要保证原来有1))

然后就可以进行转移了


 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 #define fu(a,b,c) for(int a=b;a<=c;++a)
 4 #define fd(a,b,c) for(int a=b;a>=c;--a)
 5 #define N 110
 6 #define LL long long
 7 #define Mod 9999973
 8 LL c[N][N];
 9 LL dp[N][N][N]={0};
10 int n,m;
11 void getc(){
12   fu(i,0,N-1)c[i][0]=1;
13   fu(i,1,N-1)
14     fu(j,1,i)c[i][j]=(c[i-1][j]+c[i-1][j-1])%Mod;
15 }
16 LL mul(LL a,LL b){return a*b%Mod;}
17 int main(){
18   getc();
19   dp[0][0][0]=1;
20   scanf("%d%d",&n,&m);
21   if(n<m)swap(n,m);
22   fu(i,1,n)
23     fu(j,0,m)
24       fu(k,0,m-j){
25         dp[i][j][k]=dp[i-1][j][k];
26         if(j)dp[i][j][k]+=mul(dp[i-1][j-1][k],c[m-j-k+1][1]);
27         if(j&&k)dp[i][j][k]+=mul(dp[i-1][j][k-1],mul(j,m-j-k+1));
28         if(j>=2)dp[i][j][k]+=mul(dp[i-1][j-2][k],c[m-j-k+2][2]);
29         if(k>=1&&j<=m-1)dp[i][j][k]+=mul(dp[i-1][j+1][k-1],c[j+1][1]);
30         if(k>=2&&j<=m-2)dp[i][j][k]+=mul(dp[i-1][j+2][k-2],c[j+2][2]);
31         dp[i][j][k]%=Mod;
32       }
33   int ans=0;
34   fu(i,0,m)
35     fu(j,0,m-i)
36       ans=(ans+dp[n][i][j])%Mod;
37   printf("%d",ans);
38   return 0;
39 }

 

posted @ 2018-09-19 11:23  Dream_maker_yk  阅读(229)  评论(0编辑  收藏  举报