BZOJ4552 Tjoi2016&Heoi2016排序 【二分+线段树】*

Description

在2016年,佳媛姐姐喜欢上了数字序列。因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他。这个难题是这样子的:给出一个1到n的全排列,现在对这个全排列序列进行m次局部排序,排序分为两种:1:(0,l,r)表示将区间[l,r]的数字升序排序2:(1,l,r)表示将区间[l,r]的数字降序排序最后询问第q位置上的数字。

Input

输入数据的第一行为两个整数n和m。n表示序列的长度,m表示局部排序的次数。1 <= n, m <= 10^5第二行为n个整数,表示1到n的一个全排列。接下来输入m行,每一行有三个整数op, l, r, op为0代表升序排序,op为1代表降序排序, l, r 表示排序的区间。最后输入一个整数q,q表示排序完之后询问的位置, \(1 <= q <= n。1 <= n <= 10^5,1 <= m <= 10^5\)

Output

输出数据仅有一行,一个整数,表示按照顺序将全部的部分排序结束后第q位置上的数字。

Sample Input

6 3
1 6 2 5 3 4
0 1 4
1 3 6
0 2 4
3

Sample Output

5


首先发现一个性质,这个答案是可以二分的 这是为啥啊?
然后二分之后我们就可以把所有小于等于mid的数变成0,大于等于mid的数变成1,然后对区间排序就变成了分别赋值0和1,就变成区间修改操作了,于是可以用线段树维护出来,如果发现第k位上是0那么说明l可能可以变大,否则r必须变小

然后就直接二分维护就行了,注意modify的时候边界问题


#include<bits/stdc++.h>
using namespace std;
#define fu(a,b,c) for(int a=b;a<=c;++a)
#define N 100010
#define LD (t<<1)
#define RD (t<<1|1)
int a[N],b[N],n,m,k;
int l[N],r[N],typ[N];
int siz[N<<2],chg[N<<2];
void pushup(int t){siz[t]=siz[LD]+siz[RD];}
void pushdown(int t,int l,int r){
  if(l==r)return;
  if(chg[t]!=-1){
    int mid=(l+r)>>1;
    if(l<=mid)chg[LD]=chg[t],siz[LD]=(mid-l+1)*chg[t];
    if(mid<r)chg[RD]=chg[t],siz[RD]=(r-mid)*chg[t];
    chg[t]=-1;
  }
}
void build(int t,int l,int r){
  if(l>r)return;
  chg[t]=-1;
  if(l==r){siz[t]=b[l];return;}
  int mid=(l+r)>>1;
  build(LD,l,mid);
  build(RD,mid+1,r);
  pushup(t);
}
void modify(int t,int l,int r,int L,int R,int vl){
  if(L>R)return;
  if(L<=l&&r<=R){chg[t]=vl,siz[t]=(r-l+1)*vl;return;}
  pushdown(t,l,r);
  int mid=(l+r)>>1;
  if(R<=mid)modify(LD,l,mid,L,R,vl);
  else if(L>mid)modify(RD,mid+1,r,L,R,vl);
  else modify(LD,l,mid,L,mid,vl),modify(RD,mid+1,r,mid+1,R,vl);
  pushup(t);
}
int query(int t,int l,int r,int L,int R){
  if(L<=l&&r<=R)return siz[t];
  pushdown(t,l,r);
  int mid=(l+r)>>1,ans=0;
  if(R<=mid)ans=query(LD,l,mid,L,R);
  else if(L>mid)ans=query(RD,mid+1,r,L,R);
  else ans=query(LD,l,mid,L,mid)+query(RD,mid+1,r,mid+1,R);
  pushup(t);
  return ans;
}
bool check(int val){
  fu(i,1,n)b[i]=(a[i]>=val);
  build(1,1,n);
  fu(i,1,m){
    int s=query(1,1,n,l[i],r[i]);
    if(typ[i]==0){
      modify(1,1,n,l[i],r[i]-s,0);
      modify(1,1,n,r[i]-s+1,r[i],1);
    }else{
      modify(1,1,n,l[i],l[i]+s-1,1);
      modify(1,1,n,l[i]+s,r[i],0);
    }
  }
  return query(1,1,n,k,k);
}
int main(){
  scanf("%d%d",&n,&m);
  fu(i,1,n)scanf("%d",&a[i]);
  fu(i,1,m)scanf("%d%d%d",&typ[i],&l[i],&r[i]);
  scanf("%d",&k);
  int l=1,r=n,ans=0;
  while(l<=r){
    int mid=(l+r)>>1;
    if(check(mid))l=mid+1,ans=mid;
    else r=mid-1;
  }
  printf("%d",ans);
  return 0;
}
posted @ 2018-09-19 18:59  Dream_maker_yk  阅读(143)  评论(0编辑  收藏  举报