BZOJ4012: [HNOI2015]开店【动态点分治】
Description
风见幽香有一个好朋友叫八云紫,她们经常一起看星星看月亮从诗词歌赋谈到
人生哲学。最近她们灵机一动,打算在幻想乡开一家小店来做生意赚点钱。这样的
想法当然非常好啦,但是她们也发现她们面临着一个问题,那就是店开在哪里,面
向什么样的人群。很神奇的是,幻想乡的地图是一个树形结构,幻想乡一共有 n
个地方,编号为 1 到 n,被 n-1 条带权的边连接起来。每个地方都住着一个妖怪,
其中第 i 个地方的妖怪年龄是 \(x_i\)。妖怪都是些比较喜欢安静的家伙,所以它们并
不希望和很多妖怪相邻。所以这个树所有顶点的度数都小于或等于 3。妖怪和人一
样,兴趣点随着年龄的变化自然就会变化,比如我们的 18 岁少女幽香和八云紫就
比较喜欢可爱的东西。幽香通过研究发现,基本上妖怪的兴趣只跟年龄有关,所以
幽香打算选择一个地方 u(u为编号),然后在 u开一家面向年龄在 L到R 之间(即
年龄大于等于 L、小于等于 R)的妖怪的店。也有可能 u这个地方离这些妖怪比较
远,于是幽香就想要知道所有年龄在 L 到 R 之间的妖怪,到点 u 的距离的和是多
少(妖怪到 u 的距离是该妖怪所在地方到 u 的路径上的边的权之和) ,幽香把这个
称为这个开店方案的方便值。幽香她们还没有决定要把店开在哪里,八云紫倒是准
备了很多方案,于是幽香想要知道,对于每个方案,方便值是多少呢。
Input
第一行三个用空格分开的数 n、Q和A,表示树的大小、开店的方案个数和妖
怪的年龄上限。
第二行n个用空格分开的数 \(x_1、x_2、…、x_n,x_i\) 表示第i 个地点妖怪的年
龄,满足0<=\(x_i\)<A。(年龄是可以为 0的,例如刚出生的妖怪的年龄为 0。)
接下来 n-1 行,每行三个用空格分开的数 a、b、c,表示树上的顶点 a 和 b 之
间有一条权为c(1 <= c <= 1000)的边,a和b 是顶点编号。
接下来Q行,每行三个用空格分开的数 u、 a、 b。对于这 Q行的每一行,用 a、
b、A计算出 L和R,表示询问“在地方 u开店,面向妖怪的年龄区间为[L,R]的方
案的方便值是多少”。对于其中第 1 行,L 和 R 的计算方法为:L=min(a%A,b%A),
R=max(a%A,b%A)。对于第 2到第 Q行,假设前一行得到的方便值为 ans,那么当
前行的 L 和 R 计算方法为: L=min((a+ans)%A,(b+ans)%A),
R=max((a+ans)%A,(b+ans)%A)。
Output
对于每个方案,输出一行表示方便值。
Sample Input
10 10 10
0 0 7 2 1 4 7 7 7 9
1 2 270
2 3 217
1 4 326
2 5 361
4 6 116
3 7 38
1 8 800
6 9 210
7 10 278
8 9 8
2 8 0
9 3 1
8 0 8
4 2 7
9 7 3
4 7 0
2 2 7
3 2 1
2 3 4
Sample Output
1603
957
7161
9466
3232
5223
1879
1669
1282
0
HINT
满足 n<=150000,Q<=200000。对于所有数据,满足 A<=10^9
思路
很显然可以用动态点分治做
一开始想到要维护size和sumdistans就果断线段树了
然后就又MLE又RE
后来发现信息是静态的,没有修改我怎么才发现
然后就可以直接上vector大法+二分了
还不用离散化真好。。。。
线段树:
#include<bits/stdc++.h>
using namespace std;
int read() {
int res = 0, w = 1; char c = getchar();
while (!isdigit(c) && c != '-') c = getchar();
if (c == '-') w = -1, c = getchar();
while (isdigit(c)) res = (res << 1) + (res << 3) + c - '0', c = getchar();
return res * w;
}
typedef long long ll;
typedef pair<ll, int> pi;
const int N = 2e5 + 10;
const int LOG = 40;
struct Edge {
int v, w, nxt;
Edge(int v = 0, int w = 0, int nxt = 0): v(v), w(w), nxt(nxt) {}
} E[N << 1];
int head[N], tot = 0;
int n, q, A, num_age, age[N], pre[N];
char c[10];
void addedge(int u, int v, int w) {
E[++tot] = Edge(v, w, head[u]);
head[u] = tot;
}
namespace LCA {
struct Node {
int id, depth;
Node(int id = 0, int depth = 0): id(id), depth(depth) {}
bool operator < (const Node b) const {
return depth < b.depth;
}
} ST[N << 1][LOG];
int first[N], dep[N], log[N << 1], dist[N], len;
void dfs(int u, int fa) {
ST[++len][0] = Node(u, dep[u]);
first[u] = len;
for (int i = head[u]; i; i = E[i].nxt) {
int v = E[i].v;
if (v == fa) continue;
dep[v] = dep[u] + 1;
dist[v] = dist[u] + E[i].w;
dfs(v, u);
ST[++len][0] = Node(u, dep[u]);
}
}
void init() {
dfs(1, 0);
log[1] = 0;
for (int i = 2; i <= len; i++) log[i] = log[i >> 1] + 1;
for (int j = 1; (1 << j) <= len; j++) {
for (int i = 1; i + (1 << j) - 1 <= len; i++) {
ST[i][j] = min(ST[i][j - 1], ST[i + (1 << (j - 1))][j - 1]);
}
}
}
int getdis(int u, int v) {
if (first[u] < first[v]) swap(u, v);
int k = log[first[u] - first[v] + 1];
int lca = min(ST[first[v]][k], ST[first[u] - (1 << k) + 1][k]).id;
return dist[u] + dist[v] - (dist[lca] << 1);
}
}
namespace Segment_Tree {
int tot = 0, rt[N << 1], ls[(N * LOG) << 1], rs[(N * LOG) << 1];
ll val[(N * LOG) << 1], siz[(N * LOG) << 1];
void modify(int &t, int l, int r, int pos, int vl) {
if (!t) t =++tot;
val[t] += vl, siz[t]++;
if (l == r) return;
int mid = (l + r) >> 1;
if (pos <= mid) modify(ls[t], l, mid, pos, vl);
else modify(rs[t], mid + 1, r, pos, vl);
}
pi query(int t, int l, int r, int ql, int qr) {
if (!t) return pi(0ll, 0);
if (ql <= l && r <= qr) return pi(val[t], siz[t]);
int mid = (l + r) >> 1;
if (qr <= mid) return query(ls[t], l, mid, ql, qr);
else if (ql > mid) return query(rs[t], mid + 1, r, ql, qr);
else {
pi ansl = query(ls[t], l, mid, ql, mid);
pi ansr = query(rs[t], mid + 1, r, mid + 1, qr);
return pi(ansl.first + ansr.first, ansl.second + ansr.second);
}
}
}
namespace Tree_Devide {
int father[N], siz[N], F[N], siz_all, root;
bool vis[N];
void getsiz(int u, int fa) {
siz[u] = 1;
for (int i = head[u]; i; i = E[i].nxt) {
int v = E[i].v;
if (v == fa || vis[v]) continue;
getsiz(v, u);
siz[u] += siz[v];
}
}
void getroot(int u, int fa) {
F[u] = 0;
for (int i = head[u]; i; i = E[i].nxt) {
int v = E[i].v;
if (v == fa || vis[v]) continue;
getroot(v, u);
F[u] = max(F[u], siz[v]);
}
F[u] = max(F[u], siz_all - siz[u]);
if (F[u] < F[root]) root = u;
}
void solve(int u, int fa) {
father[u] = fa;
vis[u] = 1;
getsiz(u, 0);
for (int i = head[u]; i; i = E[i].nxt) {
int v = E[i].v;
if (vis[v]) continue;
F[root = 0] = siz_all = siz[v];
getroot(v, 0);
solve(root, u);
}
}
void init() {
getsiz(1, 0);
F[root = 0] = siz_all = n;
getroot(1, 0);
solve(root, 0);
}
#define ID0(p) (p)
#define ID1(p) (p + n)
void modify_tree(int u) {
using namespace Segment_Tree;
modify(rt[ID0(u)], 1, num_age, age[u], 0);
for (int cur = u; father[cur]; cur = father[cur]) {
int dis = LCA::getdis(u, father[cur]);
modify(rt[ID0(father[cur])], 1, num_age, age[u], dis);
modify(rt[ID1(cur)], 1, num_age, age[u], dis);
}
}
ll query_tree(int u, int l, int r) {
using namespace Segment_Tree;
ll res = query(rt[ID0(u)], 1, num_age, l, r).first;
pi now;
for (int cur = u; father[cur]; cur = father[cur]) {
int dis = LCA::getdis(u, father[cur]);
now = query(rt[ID0(father[cur])], 1, num_age, l, r);
res += now.first + 1ll * dis * now.second;
now = query(rt[ID1(cur)], 1, num_age, l, r);
res -= now.first + 1ll * dis * now.second;
}
return res;
}
}
int main() {
#ifdef dream_maker
freopen("input.txt", "r", stdin);
#endif
n = read(), q = read(), A = read();
for (int i = 1; i <= n; i++) {
pre[i] = age[i] = read();
}
sort(pre + 1, pre + n + 1);
num_age = unique(pre + 1, pre + n + 1) - pre - 1;
for (int i = 1; i <= n; i++) {
age[i] = lower_bound(pre + 1, pre + num_age + 1, age[i]) - pre;
}
for (int i = 1; i < n; i++) {
int u = read(), v = read(), w = read();
addedge(u, v, w);
addedge(v, u, w);
}
LCA::init();
Tree_Devide::init();
for (int i = 1; i <= n; i++) {
Tree_Devide::modify_tree(i);
}
ll lastans = 0;
while (q--) {
int u = read(), l = (read() % A + lastans % A) % A, r = (read() % A + lastans % A) % A;
if (l > r) swap(l, r);
l = lower_bound(pre + 1, pre + num_age + 1, l) - pre;
r = upper_bound(pre + 1, pre + num_age + 1, r) - pre - 1;
lastans = Tree_Devide::query_tree(u, l, r);
printf("%lld\n", lastans);
}
return 0;
}
vector+二分
#include<bits/stdc++.h>
using namespace std;
int read() {
int res = 0, w = 1; char c = getchar();
while (!isdigit(c) && c != '-') c = getchar();
if (c == '-') w = -1, c = getchar();
while (isdigit(c)) res = (res << 1) + (res << 3) + c - '0', c = getchar();
return res * w;
}
typedef long long ll;
typedef pair<int, ll> pi;
const int INF_of_int = 1e9;
const int N = 2e5 + 10;
const int LOG = 40;
struct Edge {
int v, w, nxt;
Edge(int v = 0, int w = 0, int nxt = 0): v(v), w(w), nxt(nxt) {}
} E[N << 1];
int head[N], tot = 0;
int n, q, A, age[N];
void addedge(int u, int v, int w) {
E[++tot] = Edge(v, w, head[u]);
head[u] = tot;
}
namespace LCA {
struct Node {
int id, depth;
Node(int id = 0, int depth = 0): id(id), depth(depth) {}
bool operator < (const Node b) const {
return depth < b.depth;
}
} ST[N << 1][LOG];
int first[N], dep[N], log[N << 1], dist[N], len;
void dfs(int u, int fa) {
ST[++len][0] = Node(u, dep[u]);
first[u] = len;
for (int i = head[u]; i; i = E[i].nxt) {
int v = E[i].v;
if (v == fa) continue;
dep[v] = dep[u] + 1;
dist[v] = dist[u] + E[i].w;
dfs(v, u);
ST[++len][0] = Node(u, dep[u]);
}
}
void init() {
dfs(1, 0);
log[1] = 0;
for (int i = 2; i <= len; i++) log[i] = log[i >> 1] + 1;
for (int j = 1; (1 << j) <= len; j++) {
for (int i = 1; i + (1 << j) - 1 <= len; i++) {
ST[i][j] = min(ST[i][j - 1], ST[i + (1 << (j - 1))][j - 1]);
}
}
}
int getdis(int u, int v) {
if (first[u] < first[v]) swap(u, v);
int k = log[first[u] - first[v] + 1];
int lca = min(ST[first[v]][k], ST[first[u] - (1 << k) + 1][k]).id;
return dist[u] + dist[v] - (dist[lca] << 1);
}
}
namespace Tree_Devide {
int father[N], siz[N], F[N], siz_all, root;
bool vis[N];
vector<pi> sum[2][N];
void getsiz(int u, int fa) {
siz[u] = 1;
sum[0][root].push_back(pi(age[u], LCA::getdis(u, root)));
sum[1][root].push_back(pi(age[u], LCA::getdis(u, father[root])));
for (int i = head[u]; i; i = E[i].nxt) {
int v = E[i].v;
if (v == fa || vis[v]) continue;
getsiz(v, u);
siz[u] += siz[v];
}
}
void getroot(int u, int fa) {
F[u] = 0;
for (int i = head[u]; i; i = E[i].nxt) {
int v = E[i].v;
if (v == fa || vis[v]) continue;
getroot(v, u);
F[u] = max(F[u], siz[v]);
}
F[u] = max(F[u], siz_all - siz[u]);
if (F[u] < F[root]) root = u;
}
void solve(int u, int fa) {
father[u] = fa;
vis[u] = 1;
sum[0][u].push_back(pi(-INF_of_int, 0));
sum[1][u].push_back(pi(-INF_of_int, 0));
getsiz(u, 0);
sum[0][u].push_back(pi(INF_of_int + 1, 0));
sum[1][u].push_back(pi(INF_of_int + 1, 0));
sort(sum[0][u].begin(), sum[0][u].end());
sort(sum[1][u].begin(), sum[1][u].end());
int len;
len = sum[0][u].size();
for (int i = 1; i < len; i++) sum[0][u][i].second += sum[0][u][i - 1].second;
len = sum[1][u].size();
for (int i = 1; i < len; i++) sum[1][u][i].second += sum[1][u][i - 1].second;
for (int i = head[u]; i; i = E[i].nxt) {
int v = E[i].v;
if (vis[v]) continue;
F[root = 0] = siz_all = siz[v];
getroot(v, 0);
solve(root, u);
}
}
void init() {
getsiz(1, 0);
F[root = 0] = siz_all = n;
getroot(1, 0);
solve(root, 0);
}
pi query(int u, int typ, int vl) {
int l = 1, r = sum[typ][u].size() - 1, res = 0;
while (l <= r) {
int mid = (l + r) >> 1;
if (sum[typ][u][mid].first <= vl) res = mid, l = mid + 1;
else r = mid - 1;
}
return pi(res, sum[typ][u][res].second);
}
pi query(int u, int typ, int l, int r) {
pi ansl = query(u, typ, l - 1);
pi ansr = query(u, typ, r);
return pi(ansr.first - ansl.first, ansr.second - ansl.second);
}
ll query_tree(int u, int l, int r) {
ll res = query(u, 0, l, r).second;
pi now;
for (int cur = u; father[cur]; cur = father[cur]) {
int dis = LCA::getdis(u, father[cur]);
now = query(father[cur], 0, l, r);
res += now.second + 1ll * dis * now.first;
now = query(cur, 1, l, r);
res -= now.second + 1ll * dis * now.first;
}
return res;
}
}
int main() {
#ifdef dream_maker
freopen("input.txt", "r", stdin);
#endif
n = read(), q = read(), A = read();
for (int i = 1; i <= n; i++) age[i] = read();
for (int i = 1; i < n; i++) {
int u = read(), v = read(), w = read();
addedge(u, v, w);
addedge(v, u, w);
}
LCA::init();
Tree_Devide::init();
ll lastans = 0;
while (q--) {
int u = read(), l = (read() % A + lastans % A) % A, r = (read() % A + lastans % A) % A;
if (l > r) swap(l, r);
lastans = Tree_Devide::query_tree(u, l, r);
printf("%lld\n", lastans);
}
return 0;
}