p1654 OSU!

期望DP

\(g[i]\)表示前i个的连续1的期望长度,\(h[i]\)表示前i个连续1的长度的平方的期望,\(f[i]\)表示前i个的期望得分

由期望的线性性质,我们可以考虑统计新增一个对答案的贡献

\[E((x+1)^3)-E(x^3)=E(3x^2+3x+1) \]

然后递推统计即可

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int n;
double g[101000],p[101000],h[101000],f[101000],ans=0;
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        scanf("%lf",&p[i]);
    for(int i=1;i<=n;i++){
        g[i]=(g[i-1]+1)*p[i];
        h[i]=(h[i-1]+2*g[i-1]+1)*p[i];
        f[i]=f[i-1]+(3*h[i-1]+3*g[i-1]+1)*p[i];
        // printf("%d %lf %lf %lf\n",i,g[i],h[i],f[i]);
    }
    printf("%.1lf",f[n]);
    return 0;
}
posted @ 2018-11-01 23:18  dreagonm  阅读(170)  评论(0编辑  收藏  举报