BZOJ 4259 残缺的字符串
思路
同样是FFT进行字符串匹配
只不过两个都有通配符
匹配函数再乘一个\(A_i\)即可
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
#define int long long
using namespace std;
const int MAXN = 1200000;
const int MOD = 998244353;
const int G = 3;
const int invG = 332748118;
int rev[MAXN];
void cal_rev(int n,int lim){
for(int i=0;i<n;i++)
rev[i]=(rev[i>>1]>>1)|((i&1)<<(lim-1));
}
int pow(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=(1LL*ans*a)%MOD;
a=(1LL*a*a)%MOD;
b>>=1;
}
return ans;
}
void NTT(int *a,int opt,int n,int lim){
for(int i=0;i<n;i++)
if(i<rev[i])
swap(a[i],a[rev[i]]);
for(int i=2;i<=n;i<<=1){
int len=i/2,tmp=pow((opt)?G:invG,(MOD-1)/i);
for(int j=0;j<n;j+=i){
int arr=1;
for(int k=j;k<j+len;k++){
int t=(1LL*a[k+len]*arr)%MOD;
a[k+len]=(a[k]-t+MOD)%MOD;
a[k]=(a[k]+t)%MOD;
arr=(1LL*arr*tmp)%MOD;
}
}
}
if(!opt){
int invN = pow(n,MOD-2);
for(int i=0;i<n;i++)
a[i]=(1LL*a[i]*invN)%MOD;
}
}
int n,m,s[MAXN],t[MAXN],a[MAXN],b[MAXN],c[MAXN],ans[MAXN],cnt;
char S[MAXN];
signed main(){
freopen("test.in","r",stdin);
freopen("test.out","w",stdout);
scanf("%lld %lld",&m,&n);
scanf("%s",S);
for(int i=0;i<m;i++)
t[i]=(S[i]=='*')?0:S[i]-'a'+1;
reverse(t,t+m);
scanf("%s",S);
for(int i=0;i<n;i++)
s[i]=(S[i]=='*')?0:S[i]-'a'+1;
int midlen=1,midlim=0;
while(midlen<(n+m))
midlen<<=1,midlim++;
cal_rev(midlen,midlim);
for(int i=0;i<midlen;i++)
a[i]=(s[i]*s[i]*s[i])%MOD,b[i]=t[i];
NTT(a,1,midlen,midlim);
NTT(b,1,midlen,midlim);
for(int i=0;i<midlen;i++)
c[i]=(a[i]*b[i])%MOD;
for(int i=0;i<midlen;i++)
a[i]=(2*s[i]*s[i])%MOD,b[i]=(t[i]*t[i])%MOD;
NTT(a,1,midlen,midlim);
NTT(b,1,midlen,midlim);
for(int i=0;i<midlen;i++)
c[i]=(c[i]-a[i]*b[i]+MOD)%MOD;
for(int i=0;i<midlen;i++)
a[i]=s[i],b[i]=(t[i]*t[i]*t[i])%MOD;
NTT(a,1,midlen,midlim);
NTT(b,1,midlen,midlim);
for(int i=0;i<midlen;i++)
c[i]=(c[i]+a[i]*b[i])%MOD;
NTT(c,0,midlen,midlim);
// for(int i=0;i<midlen;i++)
// printf("!%lld\n",c[i]);
for(int i=m-1;i<n;i++)
if(!c[i])
ans[++cnt]=i-m+1;
printf("%lld\n",cnt);
for(int i=1;i<=cnt;i++)
printf("%lld ",ans[i]+1);
return 0;
}