BZOJ 4503 两个串
思路
我们定义一个函数,\(F(x,y)=(a_x-b_y)^2 b_y\),使得有通配符的时候和相等的时候都为0
\[\begin{align}&\sum_{i=0}^{n-m}\sum_{j=0}^{m-1} (a_{i+j}-b_j)^2b_j\\=&\sum_{i=0}^{n-m}\sum_{j=0}^{m-1} (a_{i+j}^2-2a_{i+j}b_j+b_j^2)b_j\\=&\sum_{i=0}^{n-m}\sum_{j=0}^{m-1} a_{i+j}^2b_j-2a_{i+j}b_j^2+b_j^3\\=&\sum_{i=0}^{n-m}\sum_{j=0}^{m-1} a_{i+j}^2b_j-\sum_{j=0}^{m-1}2a_{i+j}b_j^2+\sum_{j=0}^{m-1}b_j^3\end{align}
\]
尝试把b翻转一下
\[\begin{align}&\sum_{i=0}^{n-m}\sum_{j=0}^{m-1} (a_{i+j}-b_{m-j-1})^2b_{m-j-1}\\=&\sum_{i=0}^{n-m}\sum_{j=0}^{m-1} (a_{i+j}^2-2a_{i+j}b_{m-j-1}+b_{m-j-1}^2)b_{m-j-1}\\=&\sum_{i=0}^{n-m}\sum_{j=0}^{m-1} a_{i+j}^2b_{m-j-1}-2a_{i+j}b_{m-j-1}^2+b_{m-j-1}^3\\=&\sum_{i=0}^{n-m}\sum_{j=0}^{m-1} a_{i+j}^2b_{m-j-1}-\sum_{i=0}^{n-m}\sum_{j=0}^{m-1}2a_{i+j}b_{m-j-1}^2+\sum_{i=0}^{n-m}\sum_{j=0}^{m-1}b_{m-j-1}^31\end{align}
\]
枚举\(m+i-1\),就变成卷积了
把三个式子分别卷起来
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
#define int long long
using namespace std;
const int MAXN = 300000;
const int MOD = 998244353;
const int G = 3;
const int invG = 332748118;
int rev[MAXN];
void cal_rev(int n,int lim){
for(int i=0;i<n;i++)
rev[i]=(rev[i>>1]>>1)|((i&1)<<(lim-1));
}
int pow(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=(1LL*ans*a)%MOD;
a=(1LL*a*a)%MOD;
b>>=1;
}
return ans;
}
void NTT(int *a,int opt,int n,int lim){
for(int i=0;i<n;i++)
if(i<rev[i])
swap(a[i],a[rev[i]]);
for(int i=2;i<=n;i<<=1){
int len=i/2,tmp=pow((opt)?G:invG,(MOD-1)/i);
for(int j=0;j<n;j+=i){
int arr=1;
for(int k=j;k<j+len;k++){
int t=(1LL*a[k+len]*arr)%MOD;
a[k+len]=(a[k]-t+MOD)%MOD;
a[k]=(a[k]+t)%MOD;
arr=(1LL*arr*tmp)%MOD;
}
}
}
if(!opt){
int invN=pow(n,MOD-2);
for(int i=0;i<n;i++)
a[i]=(1LL*a[i]*invN)%MOD;
}
}
int s[MAXN],t[MAXN],x[MAXN],a[MAXN],b[MAXN],c[MAXN],n,m,ans[MAXN],cnt;
char S[MAXN];
signed main(){
scanf("%s",S);
n=strlen(S);
for(int i=0;i<n;i++){
s[i]=(S[i]=='?')?0:S[i]-'a'+1;
x[i]=1;
}
scanf("%s",S);
m=strlen(S);
for(int i=0;i<m;i++)
t[i]=(S[i]=='?')?0:S[i]-'a'+1;
reverse(t,t+m);
int midlen=1,midlim=0;
while(midlen<(n+m))
midlen<<=1,midlim++;
cal_rev(midlen,midlim);
for(int i=0;i<midlen;i++)
b[i]=1;
for(int i=0;i<midlen;i++)
a[i]=(t[i]*t[i]*t[i])%MOD;
NTT(b,1,midlen,midlim);
NTT(a,1,midlen,midlim);
for(int i=0;i<midlen;i++)
c[i]=(a[i]*b[i])%MOD;
for(int i=0;i<midlen;i++)
b[i]=(2*s[i])%MOD;
for(int i=0;i<midlen;i++)
a[i]=(t[i]*t[i])%MOD;
NTT(b,1,midlen,midlim);
NTT(a,1,midlen,midlim);
for(int i=0;i<midlen;i++)
c[i]=(c[i]-a[i]*b[i]+MOD)%MOD;
for(int i=0;i<midlen;i++)
b[i]=(s[i]*s[i])%MOD;
for(int i=0;i<midlen;i++)
a[i]=(t[i])%MOD;
NTT(b,1,midlen,midlim);
NTT(a,1,midlen,midlim);
for(int i=0;i<midlen;i++)
c[i]=(c[i]+a[i]*b[i])%MOD;
NTT(c,0,midlen,midlim);
// for(int i=0;i<midlen;i++)
// printf("!%lld\n",c[i]);
for(int i=m-1;i<n;i++)
if(!c[i])
ans[++cnt]=i-m+1;
printf("%lld\n",cnt);
for(int i=1;i<=cnt;i++)
printf("%lld\n",ans[i]);
return 0;
}