P4720 【模板】扩展卢卡斯

思路

扩展Lucas和Lucas定理其实没什么关系
我们要求的是这样的一个问题

\[\left(\begin{matrix}n\\m\end{matrix}\right) mod\ P \]

p不一定是素数
所以需要CRT合并
问题转化为

\[x\equiv \left(\begin{matrix}n\\m\end{matrix}\right) (mod\ p_1^{k_1}) \\ x\equiv \left(\begin{matrix}n\\m\end{matrix}\right) (mod\ p_2^{k_2})\\ \dots\\ x\equiv \left(\begin{matrix}n\\m\end{matrix}\right) (mod\ p_t^{k_t}) \]

然后因为\(p_1^{k_1},p_2^{k_2},\dots,p_t^{k_t}\)互质,所以直接CRT
现在要求的是$ \left(\begin{matrix}n\m\end{matrix}\right) (mod\ p_i^{k_i})\( 由组合数的公式可知,要求的是\)n! (mod\p_i^{k_i} )$
为了避免没有逆元,要先把阶乘中\(p_i\)全部消去,最后再乘回来(jc求质因数)
然后可以发现
有一部分是可以递归处理的(就是(n/pi)!)
有一部分在模pk意义下是有循环节的,枚举pk的长度,计算即可,出现了n/pk次
还有一部分剩下的,长度不会超过pk,暴力计算即可
然后就没了

代码

#include <cstdio>
#include <cstring>
#include <algorithm>
#define int long long
using namespace std;
int pow(int a,int b,int MOD){
    int ans=1;
    while(b){
        if(b&1)
            ans=(ans*a)%MOD;
        a=(a*a)%MOD;
        b>>=1;
    }
    return ans;
}
int exgcd(int a,int b,int &x,int &y){
    if(b==0){
        x=1;
        y=0;
        return a;
    }
    int req=exgcd(b,a%b,x,y);
    int t=x;
    x=y;
    y=t-a/b*y;
    return req;
}
int inv(int a,int p){
    if(!a) 
        return 0;
    int x,y;
    exgcd(a,p,x,y);
    x=((x%p+p)%p);
    if(!x)
        x+=p;
    return x;
}
int mul(int n,int pi,int pk){//get n!/pi^a%p^k
    if(!n)
        return 1;
    int ans=1;
    for(int i=2;i<=pk;i++)
        if(i%pi)
            ans=(ans*i)%pk;
    ans=pow(ans,n/pk,pk);
    for(int i=2;i<=n%pk;i++)
        if(i%pi)
            ans=(ans*i)%pk;
    return ans*mul(n/pi,pi,pk)%pk;
}
int C(int n,int m,int Mod,int pi,int pk){
    if(m>n)
        return 0;
    int jcn=mul(n,pi,pk),jcm=mul(m,pi,pk),jcnm=mul(n-m,pi,pk),k=0;
    for(int i=n;i;i/=pi)
        k+=i/pi;
    for(int i=m;i;i/=pi)
        k-=i/pi;
    for(int i=n-m;i;i/=pi)
        k-=i/pi;
    int ans=jcn*inv(jcm,pk)%pk*inv(jcnm,pk)%pk*pow(pi,k,pk)%pk;
    return ans*(Mod/pk)%Mod*inv(Mod/pk,pk)%Mod;
}
int exLucas(int n,int m,int Mod){
    int ans=0;
    for(int i=2,t=Mod;i<=Mod;i++){
        if(!(t%i)){
            int midpk=1;
            while(!(t%i)){
                midpk*=i;
                t/=i;
            }
            ans=(ans+C(n,m,Mod,i,midpk))%Mod;
        }
    }
    return ans;
}
int n,m,MOD;
signed main(){
    scanf("%lld %lld %lld",&n,&m,&MOD);
    printf("%lld\n",exLucas(n,m,MOD));
    return 0;
}
posted @ 2019-03-14 21:23  dreagonm  阅读(171)  评论(0编辑  收藏  举报