P4777 【模板】扩展中国剩余定理(EXCRT)
思路
中国剩余定理解决的是这样的问题
求x满足
\[\begin{matrix}x \equiv a_1(mod\ m_1)\\x\equiv a_2(mod\ m_2)\\ \dots\\x\equiv a_n(mod\ m_n)\end{matrix}
\]
在模数互质的情况下,解为
\[x=\sum_ia_iM_iM_i^{-1}(mod M)
\]
其中\(M=\prod_{i}m_i\),\(M_i=\frac{M}{m_i}\),\(M_i^{-1}\)为\(M_i\)在模\(m_i\)意义下的逆元
在模数不互质的情况下,我们需要扩展中国剩余定理
设有两个同余方程
\[x \equiv a_1(mod\ m_1)\\x\equiv a_2 (mod\ m_2)
\]
其中\(m_1\)与\(m_2\)不互质
可得到
\[x=a_1+m_1x_1\\
x=a_2+m_2x_2
\]
所以得到
\[a_1+m_1x_1 = a_2+m_2x_2
\]
变形后有
\[m_1x_1+m_2x_2=a_2-a_1
\]
用exgcd解出最小的\(x_1\)
则有
\[x \equiv (a_1+m_1x_1)(mod\ lcm(m_1,m_2))
\]
相当于把两个式子合并在一起,EXcrt就是将所有式子合并完即可
代码
因为不想写龟速乘所以用了__int128
#include <cstdio>
#include <algorithm>
#include <cstring>
#define int __int128
using namespace std;
int exgcd(int a,int b,int &x,int &y){
if(b==0){
x=1,y=0;
return a;
}
int req=exgcd(b,a%b,x,y);
int t=x;
x=y;
y=t-a/b*y;
return req;
}
int gcd(int a,int b){
return (b==0)?a:gcd(b,a%b);
}
int lcm(int a,int b){
return (a*b)/gcd(a,b);
}
int calc(int a,int b,int c){//ax+by=c
int d=gcd(a,b);
int x1,x2;
exgcd(a,b,x1,x2);
b/=d;
x=(x*(c/d)%b+b)%b;
return ans;
}
pair<int,int> merge(int a1,int m1,int a2,int m2){
int x1=calc(m1,m2,a2-a1);
return make_pair(x1*m1+a1,lcm(m1,m2));
}
int n,a[100100],m[100100];
signed main(){
long long mx;
scanf("%lld",&mx);
n=mx;
for(int i=1;i<=n;i++){
scanf("%lld",&mx);
m[i]=mx;
scanf("%lld",&mx);
a[i]=mx;
}
int mida=a[1],midm=m[1];
for(int i=1;i<n;i++){
pair<int,int> t= merge(mida,midm,a[i+1],m[i+1]);
mida=t.first;
midm=t.second;
}
printf("%lld\n",(long long)mida);
return 0;
}