P4721【模板】分治 FFT
瞎扯
虽然说是FFT但是还是写了一发NTT(笑)
然后忘了IDFT之后要除个n懵逼了好久
以及递归的时候忘了边界无限RE
思路
朴素算法
分治FFT
考虑到题目要求求这样的一个式子
\[F_x=\Sigma_{i=1}^{x}F_{x-i}G_{i}
\]
我们可以按定义暴力,然后再松式卡常(不是)
我们可以发现它长得像一个卷积一样,但是因为后面的f值会依赖与前面的f值,所以没法一遍FFT直接求出结果,而对每个f都跑一遍FFT太慢了,我们使用分治优化这个过程就很优秀了,复杂度是\(O(n\log^2 n)\)
分治优化
我们能够想到cdq分治的思想,在统计一个区间时,确保对这个区间有影响的操作产生的贡献已经全被统计,就是先统计[l,mid]区间对[mid+1,r]区间的贡献
然后发现对于每个\(f_x\),它对后面的\(f_i\)产生的贡献是\(\Sigma_{j=l}^{mid} f_{i}g_{i-j}\)
然后分治就好
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
#define int long long
using namespace std;
const int MOD = 998244353,G=3,invG=332748118;
int a[200000],b[200000],f[200000],g[200000],n;
int pow(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=(1LL*ans*a)%MOD;
a=(1LL*a*a)%MOD;
b>>=1;
}
return ans;
}
void FFT(int *a,int opt,int n){
int lim=0;
while((1<<lim)<n)
lim++;
for(int i=0;i<n;i++){
int t=0;
for(int j=0;j<lim;j++)
if((i>>j)&1)
t|=(1<<(lim-j-1));
if(i<t)
swap(a[i],a[t]);
}
for(int i=2;i<=n;i<<=1){
int len=i/2;
int tmp=pow((opt)?G:invG,(MOD-1)/i);
for(int j=0;j<n;j+=i){
int arr=1;
for(int k=j;k<len+j;k++){
int t=arr*a[k+len];
a[k+len]=((a[k]-t)%MOD+MOD)%MOD;
a[k]=(a[k]+t)%MOD;
arr=(arr*tmp)%MOD;
}
}
}
if(opt==0){
int invt=pow(n,MOD-2);
for(int i=0;i<n;i++)
a[i]=a[i]*invt%MOD;
}
}
void solve(int l,int r){
if(r-l==1)
return;
int t=pow(r-l,MOD-2);
int mid=(l+r)>>1;
solve(l,mid);
memset(a+(r-l)/2,0,sizeof(int)*(r-l)/2);
memcpy(a,f+l,sizeof(int)*(r-l)/2);
memcpy(b,g,sizeof(int)*(r-l));
FFT(a,1,r-l);
FFT(b,1,r-l);
for(int i=0;i<r-l;i++)
a[i]=(a[i]*b[i])%MOD;
FFT(a,0,r-l);
for(int i=(r-l)/2;i<r-l;i++)
f[l+i]=(f[l+i]+a[i])%MOD;
solve(mid,r);
}
signed main(){
int mid;
scanf("%lld",&n);
mid=n;
for(int i=1;i<=n-1;i++)
scanf("%lld",&g[i]);
int t=1;
while(t<n)
t<<=1;
n=t;
f[0]=1;
solve(0,n);
for(int i=0;i<mid;i++)
printf("%lld ",f[i]);
return 0;
}