P3455 [POI2007]ZAP-Queries(莫比乌斯反演)
思路
和YY的GCD类似但是更加简单了
类似的推一波公式即可
\[F(n)=\sum_{n|d}f(d)
\]
\[f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)
\]
\[F(d)=\lfloor\frac{n}{d}\rfloor\times\lfloor\frac{m}{d}\rfloor
\]
\[f(x)=\sum_{x|d}\mu(\frac{d}{x})\times\lfloor\frac{n}{d}\rfloor\times\lfloor\frac{m}{d}\rfloor
\]
\[f(x)=\sum_{t=1}^{\lfloor\frac{n}{x}\rfloor}\mu(t)\times\lfloor\frac{n}{x\times t}\rfloor\times\lfloor\frac{m}{x\times t}\rfloor
\]
然后整除分块即可
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int T,n,m,mu[51000],iprime[51000],isprime[51000],summu[51000],cnt,k;
void prime(int n){
isprime[1]=true;
mu[1]=1;
for(int i=2;i<=n;i++){
if(!isprime[i])
iprime[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&iprime[j]*i<=n;j++){
isprime[iprime[j]*i]=true;
mu[iprime[j]*i]=-mu[i];
if(i%iprime[j]==0){
mu[iprime[j]*i]=0;
break;
}
}
}
for(int i=1;i<=n;i++)
summu[i]=summu[i-1]+mu[i];
}
long long f(int k){
long long ans=0;
for(int l=1,r;l<=min(n,m);l=r+1){
r=min((n/(n/(l))),(m/(m/(l))));
ans+=1LL*(summu[r]-summu[l-1])*(n/(l*k))*(m/(l*k));
}
return ans;
}
int main(){
prime(50100);
scanf("%d",&T);
while(T--){
scanf("%d %d %d",&n,&m,&k);
if(n<m)
swap(n,m);
printf("%lld\n",f(k));
}
return 0;
}