python人脸识别:对完成一个简单的人脸识别项目总结
简单的人脸识别项目
附上我的思维导图
附上我的项目路径
其中我的lfw-a的图片库是在网上下载的
下载网站http://vis-www.cs.umass.edu/lfw/
下面的这个就是界面
人脸识别会对数据库进行扫描,让后加载到模型中去,到摄像头就会根据人脸进行识别显示,并打印出照片上的名字
对数据库进行删除和查询
可以扫描你输入的目录
1. 构建数据库(使用sqlite3)
import sqlite3
FACE_SQL_NAME = "face.db"
SQL_CREATE_TABLE = \
'''
CREATE TABLE FACE_INFO(
ID integer PRIMARY KEY autoincrement NOT NULL,
NAME TEXT NOT NULL,
IMAGE_PATH TEXT
);'''
SQL_INSERT_DATA = [
"INSERT INTO FACE_INFO (ID,NAME,IMAGE_PATH) VALUES (1, 'Paul',null )",
"INSERT INTO FACE_INFO (ID,NAME,IMAGE_PATH) VALUES (2, 'Allen',null )",
"INSERT INTO FACE_INFO (ID,NAME,IMAGE_PATH) VALUES (3, 'Teddy',null )",
"INSERT INTO FACE_INFO (ID,NAME,IMAGE_PATH) VALUES (4, 'Mark',null )"
]
SQL_QUERY_DATA = "SELECT id, name FROM FACE_INFO"
SQL_UPDATE_DATA = "UPDATE FACE_INFO set IMAGE_PATH = null where ID=1"
SQL_DELETE_DATA = "DELETE from FACE_INFO where ID=2;"
def create_sqlite3(sql_name):
'''
根据数据库名字 创造 或者 连接 数据库
:param sql_name:要创造或者连接的数据库名
:return:conn 返回的是这个数据库的对象
'''
conn = sqlite3.connect(sql_name)
return conn
def sqlite_exec_sql(conn, sql):
'''
执行指定的SQL语句
:param conn: 数据库的对象(他是哪个数据库)
:param sql: 需要执行的语句时什么
:return: cursor 返回受影响的行数
'''
# cursor用来执行命令的方法
c = conn.cursor()
# 执行单条sql语句,接收的参数为sql语句本身和使用的参数列表,返回值为受影响的行数
cursor = c.execute(sql)
return cursor
def create_table(conn, sql):
'''
向 该数据库创建一个表
:param conn: 需要操作的表
:param sql: 需要执行的语句
:return: 创建成功返回true, 失败返回false
'''
sqlite_exec_sql(conn, sql)
return True
2. 构建图片相关操作的函数(img_op.py)
import numpy as np
import os
import cv2
PATH1 = "./dog.jpg"
PATH2 = "C:/Users/yl177/Pictures/Camera Roll/4b91f4e8f3f658aeb78dd35c79e4c3bc.jpg"
img_file = list()
def load_face_image_data(path):
'''
通过指定路径,获得该图片,将其转化为数据
:param path: 文件路径
:return: 图片的数据
'''
img_data = cv2.imread(path)
return img_data
def move_face_image(image_path, offset_x, offset_y):
'''
对人脸图片进行平移操作(向右移25像素,向上移15像素),返回新图片的数据
:param image: 需要平移的图片路径
:param offset_x: x坐标平移的量(正 -- 向向右, 负 -- 表示向左)
:param offset_y: y坐标平移的量 (正 -- 向向下, 负 -- 表示向上)
:return:
'''
img = load_face_image_data(image_path)
rows = img.shape[0]
cols = img.shape[1]
M = np.float32([[1, 0, offset_x], [0, 1, offset_y]])
image_new_data = cv2.warpAffine(img, M, dsize=(cols, rows))
print(image_new_data)
return image_new_data
def scan_dir(path):
'''
扫描指定路径下的目录
:param path:
:return:
'''
if os.path.isfile(path):
return
file_list = os.listdir(path)
# print(file_list)
for item in file_list:
temp_path = os.path.join(path, item)
# print(temp_path)
if os.path.isfile(temp_path):
if temp_path.endswith("jpg") or temp_path.endswith("png"):
img_file.append(temp_path)
continue
if os.path.isdir(temp_path):
scan_dir(temp_path)
def show_image(img):
cv2.imshow('show_img', img)
cv2.waitKey(0)
# cv2.destroyAllWindows()
if __name__ == '__main__':
# old_img = load_face_image_data(PATH2)
# new_img = move_face_image(PATH, 15, -15)
# show_image(old_img)
# show_image(new_img)
scan_dir("./")
# print(img_file)
# print(img_file[0])
# img = load_face_image_data(img_file[1])
# show_image(img)
3. 构建人脸相关操作(face_op.py)
import sqlite3
import sql as sql_op
import img_op
def sql_con():
'''
建立数据库的连接
:return: 返回给数据库的对象
'''
return sql_op.create_sqlite3(sql_op.FACE_SQL_NAME)
def face_query(conn, face_name):
'''
根据姓名查询此人的人脸图片
:param conn: 该数据库的对象
:param face_name:需要查询的人名
:return: cursor:返回的是收到影响的行
'''
sql = "select ID,NAME,IMAGE_PATH from FACE_INFO where NAME='" + face_name + "'"
cursor = sql_op.sqlite_exec_sql(conn, sql)
return cursor
def face_query_by_id(conn, id):
'''
根据id查询此人相关信息
:param coon: 需要连接的数据库名
:param id: 需要查询的id
:return: 查到数据返回cursor,受影响的哪一行
'''
sql = "select ID,NAME,IMAGE_PATH from FACE_INFO where ID='" +str(id) + "'"
cursor = sql_op.sqlite_exec_sql(conn, sql)
return cursor
def face_query_all(conn):
'''
查询所有数据库
:param conn:需要连接数据库的对象
:return:查到数据返回cursor,受影响的哪一行
'''
sql = "select * from FACE_INFO"
cursor = sql_op.sqlite_exec_sql(conn, sql)
return cursor
def face_del(conn, face_name):
'''
根据图片名字删除指定的人脸数据
:param conn: 数据库
:param face_name:需要删除的图片的名字
:return:如果删除成功返回True
'''
sql = "DELETE from FACE_INFO where NAME='" + face_name + "'"
cursor = sql_op.sqlite_exec_sql(conn, sql)
conn.commit()
def face_del_by_id(conn, id):
'''
根据id删除指定的人脸数据
:param conn: 数据库
:param index: 需要删除的id索引
:return:如果删除成功返回True
'''
sql = "DELETE from FACE_INFO where ID='" + str(id) + "'"
cursor = sql_op.sqlite_exec_sql(conn, sql)
conn.commit()
def face_insert(conn, name, img_path):
'''
将人的相关信息(id,name,人脸图片)插入到数据库之中去
:param conn: 该数据库的对象
:param id: 唯一id
:param name: 人脸的姓名
:param img_path: 人脸的图片路径
:return:True数据插入成功,Talse数据插入失败
'''
sql = "INSERT INTO FACE_INFO (NAME,IMAGE_PATH) VALUES (" + "'" + name + "','" + img_path + "')"
try:
sql_op.sqlite_exec_sql(conn, sql)
except sqlite3.IntegrityError as result:
print("数据插入失败,原因:", result)
return False
else:
conn.commit()
return True
def face_recognition():
"""
实现人脸识别算法(打桩)
:return: 返回此人的姓名
"""
return 'Aaron_Eckhart_0001'
def test_1():
'''
根据id查询信息的测试
:return:
'''
conn = sql_con()
b = face_query(conn, "小红")
# print(b.fetchone())
for pid, name, path in b:
print(name)
print(pid)
print(path)
pass
conn.close()
def test_2():
'''
删除测试
:return:
'''
conn = sql_con()
face_del_by_id(conn, 5)
conn.close()
def test_3():
'''
如果插入重复的数据,则报错误(使用异常)
:return:
'''
coon = sql_con()
flag = face_insert(coon, "小红", img_op.PATH2)
if flag == True:
print("插入成功")
else:
print("插入失败")
def test_4():
'''
查询所有数据库的名字
:return:
'''
conn = sql_con()
cursor = face_query_all(conn)
for id, name, path in cursor:
print(id)
print(name)
print(path)
if __name__ == '__main__':
# test_1()
# test_2()
# test_3()
test_4()
4. 构建主界面(index.py)
from tkinter import *
from PIL import ImageTk, Image
import aikit_main_face as face_rec
import scan_op as scan_main
import face_op
FRAME_SIZE = "600x600"
WEC_IMG = "img/weclome.jpg"
def recon_img():
face_rec.demo()
pass
def scan_dir():
scan_main.scan_mulu_ui()
pass
def take_photo():
scan_main.take_photo()
pass
def del_photo():
ch = Toplevel()
ch.title("删除数据")
ch.geometry("200x200")
Label(ch, text="你要删除的人名", width=30).pack()
del_entry = Entry(ch, bg="lightblue")
del_entry.pack()
Button(ch, text="删除", command=lambda: del_data(del_entry.get())).pack()
Button(ch, text="查询数据库", command=lambda: search_data()).pack()
pass
def del_data(name):
conn = face_op.sql_con()
face_op.face_del(conn, name)
print("删除成功")
conn.close()
pass
def search_data():
conn = face_op.sql_con()
cursor = face_op.face_query_all(conn)
for id,name,path in cursor:
print("id:{}, name:{}, path:{}".format(id, name, path))
pass
conn.close()
def create_frame():
app = Tk()
app.title("人脸操作")
app.geometry(FRAME_SIZE)
app.configure(bg="skyblue")
wec_image = Image.open(WEC_IMG)
img = ImageTk.PhotoImage(wec_image)
label = Label(app, image=img)
label.pack(pady=15)
# 建立上层框架
frame_upper = Frame(app, bg="lightblue")
frame_upper.pack(pady=15)
scan_button = Button(frame_upper, text="扫描文件目录", width=28, height=3, command=lambda: scan_dir())
scan_button.pack(side=LEFT, padx=15, pady=25)
add_button = Button(frame_upper, text="添加人脸数据", width=28, height=3, command=lambda: take_photo())
add_button.pack(side=LEFT, padx=15, pady=25)
# 建立下层框架
frame_lower = Frame(app, bg="lightblue")
frame_lower.pack(pady=5)
del_button = Button(frame_lower, text="删除人脸数据", width=28, height=3, command=lambda: del_photo())
del_button.pack(side=LEFT, padx=15, pady=25)
face_rec_button = Button(frame_lower, text="人脸识别", width=28, height=3, command=lambda: recon_img())
face_rec_button.pack(side=LEFT, padx=15, pady=25)
app.mainloop()
if __name__ == '__main__':
create_frame()
4. 构建人脸识别函数(aikit_main_face.py)
import os
import cv2
import face_recognition
import face_op
import scan_op
path = "img/face_recognition" # 模型数据图片目录
# 加载人脸模型
def load_face_models():
total_image_name = []
total_face_encoding = []
conn = face_op.sql_con()
cursor = face_op.face_query_all(conn)
for id, name, path in cursor:
print(id)
print(path)
total_face_encoding.append(
face_recognition.face_encodings(
face_recognition.load_image_file(path)
)[0]
)
fn = scan_op.get_name_by_path(path)
total_image_name.append(fn)
conn.close()
# for fn in os.listdir(path): # fn 表示的是文件名
# print(path + "/" + fn)
# total_face_encoding.append(
# face_recognition.face_encodings(
# face_recognition.load_image_file(path + "/" + fn))[0])
# fn = fn[:(len(fn) - 4)] # 截取图片名(这里应该把images文件中的图片名命名为为人物名)
# total_image_name.append(fn) # 图片名字列表
return total_image_name, total_face_encoding
def demo():
total_image_name, total_face_encoding = load_face_models()
cap = cv2.VideoCapture(0) # 打开摄像头
while True:
ret, frame = cap.read()
# 发现在视频帧所有的脸和face_enqcodings
face_locations = face_recognition.face_locations(frame)
face_encodings = face_recognition.face_encodings(frame, face_locations)
# 在这个视频帧中循环遍历每个人脸
for (top, right, bottom, left), face_encoding in zip(
face_locations, face_encodings):
# 看看面部是否与已知人脸相匹配。
for i, v in enumerate(total_face_encoding):
match = face_recognition.compare_faces(
[v], face_encoding, tolerance=0.5)
name = "Unknown"
if match[0]:
name = total_image_name[i]
break
# 画出一个框,框住脸
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# 画出一个带名字的标签,放在框下
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255),
cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# 显示结果图像
cv2.imshow('Video', frame)
# 按下'q'键退出程序
key = cv2.waitKey(1) & 0xFF
if key == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
demo()
5. 构建另外几个界面(scan_op.py)
import tkinter as tk
from tkinter import *
import img_op
import face_op
import camera
coon = face_op.sql_con()
on_hit = False
def scan_file(scan_entry, var):
global on_hit
if on_hit == False:
path = scan_entry.get()
if path != '':
var.set("正在扫描中...")
img_op.scan_dir(path)
print(img_op.img_file)
var.set("扫描完成")
on_hit = True
else:
print("你没有输入!")
else:
on_hit = False
var.set("请输入你需要扫描的目录")
def insert_sql_img(conn):
for i in range(10):
path = img_op.img_file[i]
img_name = get_name_by_path(path)
flag = face_op.face_insert(conn, img_name, path)
if flag == True:
print("插入{}信息成功".format(img_name))
def del_sql_img(coon):
'''
通过人名删除图片在数据库的信息
'''
name = "Aaron_Eckhart_0001"
flag = face_op.face_del(coon, name)
if flag == True:
print("删除{}信息成功".format(name))
return True
def get_name_by_path(path):
'''
通过路径获得名字
:param path:
:return:
'''
lindex = path.rfind("/") == -1 or path.rfind("\\")
rindex = path.rfind(".")
return path[lindex + 1:rindex]
def search_sql_img(coon):
'''
通过人名查看图片的信息
:return:
'''
name = search_entry.get()
cursor = face_op.face_query(coon, name)
print(cursor)
for (id, name, path) in cursor:
img = img_op.load_face_image_data(path)
img_op.show_image(img)
def recon_img():
'''
检测图片
:return:
'''
name = face_op.face_recognition()
if name == img_op.img_file[2]:
messagebox.showinfo("识别成功")
else:
messagebox.showinfo("识别失败")
def take_photo():
photo = tk.Toplevel()
photo.title("拍照")
width = 600
height = 400
screen_x = photo.winfo_screenwidth()
screen_y = photo.winfo_screenheight()
x = (screen_x - width) / 2
y = (screen_y - height) / 2
photo.geometry("%dx%d+%d+%d" % (width, height, x, y))
photo.configure(bg="skyblue")
label = Label(photo, text="请输入拍照人的名字", width=30, height=2)
label.pack(pady=20)
get_name = Entry(photo, bg="lightblue")
get_name.pack(pady=5)
btn = Button(photo, text="拍照", command=lambda: camera.aikit_take_pictures(get_name.get()))
btn.pack(pady=15)
tishi = "拍照,按p实现拍照,并将图片存入数据库中,q退出拍照"
tishi_label = Label(photo, text=tishi, width=30, height=6,wraplength=200, fg="red", font="16")
tishi_label.pack()
pass
def scan_mulu_ui():
face = tk.Toplevel()
face.title("目录扫描")
face.geometry('600x600')
face.configure(bg="skyblue")
scan_img = PhotoImage(file="img/timg (1).gif")
scan_label = Label(face, image=scan_img)
scan_label.pack(pady=25)
var = tk.StringVar(value="请输入你需要扫描的目录")
frame_up = Frame(face, bg="lightblue")
frame_up.pack()
scan_label = tk.Label(frame_up, textvariable=var, bg='pink', font=('Arial', 12), width=20, height=2)
scan_label.pack(pady=15)
scan_entry = tk.Entry(frame_up, bg='skyblue', font=('Arial', 12), relief=SUNKEN, width=25)
scan_entry.pack(pady=5)
scan_btn = tk.Button(frame_up, text="扫描", width=12, height=2, command=lambda: scan_file(scan_entry, var))
show_btn = tk.Button(frame_up, text="显示", width=12, height=2, command=lambda: show_scan_content())
scan_btn.pack(side=LEFT, pady=15)
show_btn.pack(side=RIGHT)
face.mainloop()
pass
if __name__ == '__main__':
# scan_mulu_ui()
# take_photo()
pass
6. 构建照相功能,存入数据库(camera.py)
import cv2
import face_op
def aikit_take_pictures(name):
print(name)
rename = name + ".jpg"
camera = cv2.VideoCapture(0)
while True:
ret, frame = camera.read()
cv2.imshow("frame", frame)
key_code = cv2.waitKey(1)
if key_code & 0xff == ord('p'):
cv2.imwrite(rename, frame)
conn = face_op.sql_con()
# 裁剪图片
face_op.face_insert(conn, name, rename)
conn.close()
print("successful photo")
pass
if key_code & 0xff == ord('q'):
break
pass
pass
camera.release()
cv2.destroyAllWindows()
pass
if __name__ == '__main__':
pass
总体就写完了