第7篇Scrum冲刺博客

软件工程 班级链接
作业要求 作业要求
作业目标 项目冲刺
github仓库 团队项目

队名:P人大联盟

团队成员

姓名 学号
王睿娴 3222003968
张颢严 3222004426
梁恬(组长) 3222004467
潘思言 3222004423

本篇博客目录

4.2、的目录索引无法响应,其子目录可响应


1、Scrum Meeting

1.1、站立式会议照片


1.2、会议总结

昨日安排的任务 负责成员 实际完成情况 工作中遇到的困难
完成爬虫,文本预处理和词云生成的调用整合 梁恬 已完成这三个模块的调用整合,运行也正常 不同模块运行时的目录转换
连接前端输入 潘思言 基本完成 控制台默认编码为GBK导致打印微博内容失败
微调 bys 模型并优化情感分类准确率 张颢严 完成 BERT 模型优化及 BYS 模型搭建 调试过程中数据预处理效率较低,影响整体运行速度
标准化微博发布时间 王睿娴 基本完成 时间格式不匹配的问题

今日计划的任务 负责成员
完成文本预处理模块的数据集和测试集的划分,情感分析模型与系统其他模块的整合,词云样式的最终确定 梁恬
实现用户输入差错处理 潘思言
完善 LSTM、SVM、XGBoost 的模型搭建和优化 张颢严
测试 王睿娴

2、燃尽图


3、代码/文档签入记录

团队成员 代码/文档签入截图 对应的issues内容截图 对应的issues链接
梁恬 issues链接1issues链接2
潘思言 issues链接
张颢严 issues链接
王睿娴 issues链接

当天编码规范文档无更新


4、项目程序/模块的最新

4.1、最新模块的代码

点击查看用户交互模块最新代码
<!-- 话题分析 -->
   <article id="topic_analysis">
       <h2 class="major">话题分析</h2>
       <form id="topicAnalysisForm" method="post">
           <div class="fields">
               <div class="field">
                   <label for="topic_cookie">COOKIE</label>
                   <textarea id="topic_cookie" name="cookie" style="height:100px; resize:none; font-size: medium" placeholder="请输入 Cookie" required></textarea>
                   <small id="topic_cookieError" class="error-message" style="color: rgba(255, 0, 0, 0.7); display: block; margin-top: 5px; font-size: 0.7em;"></small>
               </div>
               <div class="field">
                   <label for="topic_keyword">关键词</label>
                   <input type="text" id="topic_keyword" name="keyword" value="" placeholder="请输入关键词列表,用英文逗号分隔" style="font-size: medium" required>
                   <small id="topic_keywordError" class="error-message" style="color: rgba(255, 0, 0, 0.7); display: block; margin-top: 5px; font-size: 0.7em;"></small>
               </div>
               <div class="field">
                   <label for="regions">地区筛选</label>
                   <input type="text" name="regions" id="regions" value="" placeholder="请输入想要筛选的微博发布的地区,用英文逗号分隔" style="font-size: medium" required />
                   <small id="regionsError" class="error-message" style="color: rgba(255, 0, 0, 0.7); display: block; margin-top: 5px; font-size: 0.7em;"></small>
               </div>
               <div class="field half">
                   <label for="start_date">起始日期</label>
                   <input type="date" name="start_date" id="start_date" value="" placeholder="请输入搜索的起始日期" required />
                   <small id="start_dateError" class="error-message" style="color: rgba(255, 0, 0, 0.7); display: block; margin-top: 5px; font-size: 0.7em;"></small>
               </div>
               <div class="field half">
                   <label for="end_date">终止日期</label>
                   <input type="date" name="end_date" id="end_date" value="" placeholder="请输入搜索的终止日期" required />
                   <small id="end_dateError" class="error-message" style="color: rgba(255, 0, 0, 0.7); display: block; margin-top: 5px; font-size: 0.7em;"></small>
               </div>
               <div class="field half">
                   <label for="weibo_type_input">微博类型</label>
                   <select name="weibo_type_input" id="weibo_type_input" style="font-size: medium;width: 80%">
                       <option value="全部微博">全部微博</option>
                       <option value="全部原创微博">全部原创微博</option>
                       <option value="热门微博">热门微博</option>
                       <option value="关注人微博">关注人微博</option>
                       <option value="认证用户微博">认证用户微博</option>
                       <option value="媒体微博">媒体微博</option>
                       <option value="观点微博">观点微博</option>
                   </select>
                   <small id="weibo_type_inputError" class="error-message" style="color: #ff3860; display: block; margin-top: 5px; font-size: 0.7em;"></small>
               </div>
               <div class="field half">
                   <label for="contain_type_input">筛选类型</label>
                   <select name="contain_type_input" id="contain_type_input" style="font-size: medium;width: 80%">
                       <option value="不筛选">不筛选</option>
                       <option value="包含图片">包含图片</option>
                       <option value="包含视频">包含视频</option>
                       <option value="包含音乐">包含音乐</option>
                       <option value="包含短链接">包含短链接</option>
                   </select>
                   <small id="contain_type_inputError" class="error-message" style="color: #ff3860; display: block; margin-top: 5px; font-size: 0.7em;"></small>
               </div>
           </div>
           <ul class="actions">
               <li><button type="submit" id="topic_submit" disabled>开始分析</button></li>
               <li><input type="reset" value="重置"/></li>
           </ul>
       </form>
       <div id="topic_result"></div>
   </article>

省略部分

$(document).ready(function () {
    const submitButton = document.getElementById('topic_submit');
    const form = document.getElementById('topicAnalysisForm');
    const inputs = form.querySelectorAll('input[required], textarea[required]');
    const startDateInput = document.getElementById("start_date");
    const endDateInput = document.getElementById("end_date");
    // 验证单个字段
    function validateField(field) {
        const fieldValue = field.value.trim();
        const errorElem = document.getElementById(field.id + "Error");
        let isValid = true;
        // 移除之前的错误样式
        field.classList.remove('error');
        errorElem.textContent = "";
        // 只检查格式错误,不检查空值
         if (fieldValue !== "") {
            if (field.id === 'topic_keyword') {
                // 检查是否包含中文逗号、英文句号或中文句号
                if (/[,。.]/.test(fieldValue)) {
                    errorElem.textContent = "关键词列表请使用英文逗号分隔";
                    field.classList.add('error');
                    isValid = false;
                }
                // 检查格式:不允许连续逗号、开头结尾逗号、空格+逗号或逗号+空格的组合
                else if (/(^,|,$|,,|\s,|,\s)/.test(fieldValue)) {
                    errorElem.textContent = "关键词列表格式不正确,请用英文逗号分隔且避免空项";
                    field.classList.add('error');
                    isValid = false;
                }
            } else if (field.id === 'regions') {
                // 检查是否包含中文逗号、英文句号或中文句号
                if (/[,。.]/.test(fieldValue)) {
                    errorElem.textContent = "地区列表请使用英文逗号分隔";
                    field.classList.add('error');
                    isValid = false;
                }
                // 检查格式:不允许连续逗号、开头结尾逗号、空格+逗号或逗号+空格的组合
                else if (/(^,|,$|,,|\s,|,\s)/.test(fieldValue)) {
                    errorElem.textContent = "地区列表格式不正确,请用英文逗号分隔且避免空项";
                    field.classList.add('error');
                    isValid = false;
                }
            }
        }
        return isValid;
    }
    // 验证日期
    function validateDateFields() {
        const startDateErrorElem = document.getElementById("start_dateError");
        const endDateErrorElem = document.getElementById("end_dateError");
        let isValid = true;
        // 清除之前的错误样式和消息
        startDateInput.classList.remove('error');
        endDateInput.classList.remove('error');
        startDateErrorElem.textContent = "";
        endDateErrorElem.textContent = "";
        // 只在两个日期都有值的情况下才进行比较
        if (startDateInput.value && endDateInput.value) {
            if (new Date(startDateInput.value) > new Date(endDateInput.value)) {
                startDateErrorElem.textContent = "起始日期不能晚于终止日期";
                endDateErrorElem.textContent = "终止日期不能早于起始日期";
                startDateInput.classList.add('error');
                endDateInput.classList.add('error');
                isValid = false;
            }
        }
        return isValid;
    }
    // 检查表单是否可提交
    function checkFormValidity() {
        let isFormValid = true;
        // 检查所有必填字段是否有值
        inputs.forEach(input => {
            if (!input.value.trim()) {
                isFormValid = false;
            }
        });
        // 检查格式错误
        inputs.forEach(input => {
            if (!validateField(input)) {
                isFormValid = false;
            }
        });
        // 检查日期
        if (!validateDateFields()) {
            isFormValid = false;
        }
        // 更新提交按钮状态
        submitButton.disabled = !isFormValid;
    }
    // 为所有输入字段添加验证事件监听
    inputs.forEach(input => {
        input.addEventListener('input', () => {
            validateField(input);
            checkFormValidity();
        });
        // 失焦时验证
        input.addEventListener('blur', () => {
            validateField(input);
            checkFormValidity();
        });
    });
    // 为日期输入添加事件监听
    [startDateInput, endDateInput].forEach(input => {
        input.addEventListener('input', () => {
            validateDateFields();
            checkFormValidity();
        });
        input.addEventListener('blur', () => {
            validateDateFields();
            checkFormValidity();
        });
    });
    // 表单重置处理
    form.addEventListener('reset', () => {
        // 清除所有错误消息
        document.querySelectorAll('.error-message').forEach(elem => {
            elem.textContent = "";
        });
        // 移除所有错误样式
        document.querySelectorAll('.error').forEach(elem => {
            elem.classList.remove('error');
        });
        // 禁用提交按钮
        submitButton.disabled = true;
        // 延迟检查表单有效性,等待重置完成
        setTimeout(checkFormValidity, 0);
    });
    // 页面加载时检查表单有效性
    checkFormValidity();
        $('#topicAnalysisForm').on('submit', function(event) {
            event.preventDefault();
            var formData = $(this).serialize();
            $.ajax({
                type: 'POST',
                url: '{{ url_for("page.spider_analysis_topic") }}',
                data: formData,
                success: function(response) {
                    console.log("话题分析返回的数据:", response);
                    if(response.status === 'failed') {
                        $('#topic_result').html('<h3 class="error">' + response.message + '</h3>');
                    } else {
                        // 构建并显示话题分析结果,包括词云图片
                        let resultHTML = '<h3 class="major">话题分析结果:</h3>';
                        resultHTML += '<div class="result-content">';
                        resultHTML += '<p><strong>关键词:</strong> ' + response.result.keyword + '</p>';
                        resultHTML += '<p><strong>日期范围:</strong> ' + response.result.start_date + '~' + response.result.end_date + '</p>';
                        resultHTML += '</div>';
                        // 插入词云图片
                        resultHTML += '<h3 class="major">词云展示:</h3>';
                        resultHTML += '<div class="image-grid">';
                        resultHTML += '<div class="image"><img src="{{ url_for("static", filename="wordclouds/wordcloud_all.png") }}" alt="词云图" class="wordcloud"></div>';
                        resultHTML += '</div>';
                        // 添加按钮
                        resultHTML += '<button id="gpt_suggest" style="display:block;">点击查看AI助手建议</button>';
                        $('#topic_result').html(resultHTML);

                        $('#gpt_suggest').on('click', function() {
                            var resultText = $('#topic_result .result-content').text();
                            var suggestionText = "话题分析结果:\n" + resultText + "\n请对此进行分析和建议";

                            window.open('{{ url_for("home") }}?text=' + encodeURIComponent(suggestionText) + '#gpt_suggestion', '_blank');
                        });
                    }
                },
                error: function(xhr) {
                    $('#topic_result').html('<h3 class="error">分析失败,请重试</h3>');
                }
            });
        });
    });

main.css

.error-message {
    color: rgba(255, 0, 0, 0.7);
    display: block;
    margin-top: 5px;
    font-size: 0.8em;
    min-height: 1em;
}
input.error, textarea.error, select.error {
    border-color: rgba(255, 0, 0, 0.3) !important;
    background-color: rgba(255, 0, 0, 0.1) !important;
}

点击查看数据预处理模块最新代码

text_processor.py

import json
import re
import csv
import emoji
import jieba
import unicodedata
from bs4 import BeautifulSoup
from sklearn.model_selection import train_test_split
from nlp.stopwords.get_stopwords import get_stopwords
from data_visualization.logger_config import logger

# 加载爬取数据
def load_scraped_data(csv_path):
    data = []
    try:
        with open(csv_path, 'r', encoding='utf-8-sig') as file:
            reader = csv.DictReader(file)
            data.extend(reader)
    except FileNotFoundError:
        logger.error(f"CSV File {csv_path} not found.")
    return data

# 将表情转换为中文
def explain_emojis(text):
    return emoji.demojize(text, language="zh")

# 中文分词
def cut_words(text):
    return " ".join(jieba.cut(text, cut_all=False))

# 清洗url,html
def rm_url_html(text):
    soup = BeautifulSoup(text, 'html.parser')
    text = soup.get_text()
    url_regex = re.compile(
        r'(?i)\b((?:https?://|www\d{0,3}[.]|[a-z0-9.\-]+[.][a-z]{2,4}/)'
        r'(?:[^\s()<>]+|\(([^\s()<>]+|(\([^\s()<>]+\)))*\))+'
        r'(?:\(([^\s()<>]+|(\([^\s()<>]+\)))*\)|[^\s`!()\[\]{};:\'".,'
        r'<>?«»“”‘’]))',
        re.IGNORECASE)
    return re.sub(url_regex, "", text)

# 清洗标点符号和符号
def rm_punctuation_symbols(text):
    return ''.join(ch for ch in text if unicodedata.category(ch)[0] not in
                   ['P', 'S'])

# 清洗多余的空行
def rm_extra_linebreaks(text):
    lines = text.splitlines()
    return '\n'.join(re.sub(r'\s+', ' ', line).strip() for line in lines if line.strip())

# 清洗微博评论无意义字符
def rm_meaningless(text):
    text = re.sub('[#\n]*', '', text)
    text = text.replace("转发微博", "")
    text = re.sub(r"\s+", " ", text)
    text = re.sub(r"(回复)?(//)?\s*@\S*?\s*(:| |$)", " ", text)
    return text.strip()

# 清洗英文跟数字
def rm_english_number(text):
    return re.sub(r'[a-zA-Z0-9]+', '', text)

# 清洗为只有中文
def keep_only_chinese(text):
    chinese_pattern = re.compile(u"[\u4e00-\u9fa5]+")
    return ''.join(chinese_pattern.findall(text))

# 移除停用词
def rm_stopwords(words):
    stopwords = get_stopwords()
    return [word for word in words if word.strip() and word not in stopwords]

# 数据清洗
def clean(text):
    text = explain_emojis(text)
    text = rm_url_html(text)
    text = rm_punctuation_symbols(text)
    text = rm_extra_linebreaks(text)
    text = rm_meaningless(text)
    text = rm_english_number(text)
    text = keep_only_chinese(text)
    return text.strip()

# 数据预处理
def process_data(data_list):
    all_texts = []
    all_data = []  # 用于存储所有数据,包括文本和其他键值对
    all_words = set()
    for item in data_list:
        text_value = item.get('text', '')
        text_value = clean(text_value)
        words = rm_stopwords(cut_words(text_value).split())
        item.pop('id', None)
        item.pop('user', None)
        item['sentiment_label'] = None
        item['sentiment_score'] = 0
        cleaned_item = item.copy()  # 创建字典的副本以避免修改原始数据
        cleaned_item['text'] = " ".join(words)
        all_texts.append(cleaned_item['text'])
        all_data.append(cleaned_item)  # 存储清理后的数据项
        all_words.update(words)
    # 生成索引并划分数据集和测试集
    train_indices, test_indices = train_test_split(
        range(len(all_data)), test_size=0.2, random_state=42)
    # 使用索引来划分数据
    train_data = [all_data[i] for i in train_indices]
    test_data = [all_data[i] for i in test_indices]
    # 提取训练集和测试集的文本
    train_texts = [item['text'] for item in train_data]
    test_texts = [item['text'] for item in test_data]
    return list(all_words), train_data, test_data, train_texts, test_texts

# 存储整体文本数据字典给情感模型
def save_to_csv(data_list, csv_file_path, fieldnames):
    with open(csv_file_path, 'w', newline='', encoding='utf-8-sig') as csvfile:
        writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
        writer.writeheader()
        writer.writerows(data_list)

# 存储整体文本数据(已分词版)给词云生成
def save_words_to_csv(words, csv_file_path):
    with open(csv_file_path, 'w', newline='', encoding='utf-8-sig') as csvfile:
        writer = csv.writer(csvfile)
        for word in words:
            writer.writerow([word])

# 文本预处理
def text_processor():
    csv_file_path = '../weibo_crawler/weibo_data.csv'
    data_list = load_scraped_data(csv_file_path)
    if data_list:
        # all_texts
        all_words, train_data, test_data, train_texts, test_texts = process_data(data_list)
        # 保存训练集和测试集
        save_words_to_csv(train_texts, '../model/train_texts.csv')
        save_words_to_csv(test_texts, '../model/test_texts.csv')
        save_to_csv(train_data, '../model/train_data.csv',
                    ['keyword', 'region', 'text', 'created_at',
                     'source', 'sentiment_label', 'sentiment_score'])
        save_to_csv(test_data, '../model/test_data.csv',
                    ['keyword', 'region', 'text', 'created_at',
                     'source', 'sentiment_label', 'sentiment_score'])

        save_words_to_csv(all_words, '../data_visualization'
                                     '/all_words.csv')
if __name__ == "__main__":
    text_processor()

点击查看情感分析模块最新代码
LSTM
import pandas as pd
import torch
from torch import nn
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import Dataset, DataLoader
from gensim import models
from sklearn import metrics
from utils import load_corpus, stopwords, processing

# 设置文件路径
TRAIN_PATH = "./data/weibo2018/train.txt"
TEST_PATH = "./data/weibo2018/test.txt"
PREDICT_PATH = "model/labeled_comments.csv"

if __name__ == "__main__":
    # 加载训练集和测试集
    train_data = load_corpus(TRAIN_PATH)
    test_data = load_corpus(TEST_PATH)

    # 将数据转换为 DataFrame
    df_train = pd.DataFrame(train_data, columns=["text", "label"])
    df_test = pd.DataFrame(test_data, columns=["text", "label"])

    # 打印训练数据预览
    print("训练集示例:")
    print(df_train.head())

    # Word2Vec 输入格式:list(word)
    wv_input = df_train['text'].map(lambda s: [w for w in s.split(" ") if w not in stopwords])

    # 训练 Word2Vec 模型
    word2vec = models.Word2Vec(wv_input, vector_size=64, min_count=1, epochs=1000)

    # 使用设备判断来选择 CPU 或 GPU
    device = "cuda:0" if torch.cuda.is_available() else "cpu"

    # 超参数设置
    learning_rate = 5e-4
    num_epoches = 5
    batch_size = 100
    embed_size = 64
    hidden_size = 64
    num_layers = 2

    # 定义数据集类
    class MyDataset(Dataset):
        def __init__(self, df):
            self.data = []
            self.label = []
            for s, label in zip(df["text"].tolist(), df["label"].tolist()):
                vectors = [word2vec.wv[w] for w in s.split(" ") if w in word2vec.wv.key_to_index]
                if len(vectors) > 0:  # 仅保留非空序列
                    self.data.append(torch.Tensor(vectors))
                    self.label.append(label)

        def __getitem__(self, index):
            return self.data[index], self.label[index]

        def __len__(self):
            return len(self.label)


    # 自定义 batch 处理函数
    def collate_fn(data):
        # 过滤掉空序列
        data = [item for item in data if len(item[0]) > 0]
        if len(data) == 0:  # 确保批次中有数据
            raise ValueError("所有样本均为空序列,请检查数据处理逻辑。")

        data.sort(key=lambda x: len(x[0]), reverse=True)  # 按序列长度降序排列
        data_length = [len(sq[0]) for sq in data]
        x = [i[0] for i in data]
        y = [i[1] for i in data]
        data = pad_sequence(x, batch_first=True, padding_value=0)
        return data, torch.tensor(y, dtype=torch.float32), data_length


    # 创建训练集与测试集
    train_data = MyDataset(df_train)
    train_loader = DataLoader(train_data, batch_size=batch_size, collate_fn=collate_fn, shuffle=True)
    test_data = MyDataset(df_test)
    test_loader = DataLoader(test_data, batch_size=batch_size, collate_fn=collate_fn, shuffle=False)

    # 定义 LSTM 模型
    class LSTM(nn.Module):
        def __init__(self, input_size, hidden_size, num_layers):
            super(LSTM, self).__init__()
            self.hidden_size = hidden_size
            self.num_layers = num_layers
            self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
            self.fc = nn.Linear(hidden_size * 2, 1)
            self.sigmoid = nn.Sigmoid()

        def forward(self, x, lengths):
            h0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device)
            c0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device)
            packed_input = torch.nn.utils.rnn.pack_padded_sequence(input=x, lengths=lengths, batch_first=True)
            packed_out, (h_n, h_c) = self.lstm(packed_input, (h0, c0))
            lstm_out = torch.cat([h_n[-2], h_n[-1]], 1)
            out = self.fc(lstm_out)
            out = self.sigmoid(out)
            return out

    # 实例化模型
    lstm = LSTM(embed_size, hidden_size, num_layers).to(device)

    # 定义损失函数与优化器
    criterion = nn.BCELoss()
    optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate)

    # 测试函数
    def test():
        lstm.eval()
        y_pred, y_true = [], []
        with torch.no_grad():
            for x, labels, lengths in test_loader:
                x = x.to(device)
                outputs = lstm(x, lengths)
                outputs = outputs.view(-1)
                y_pred.append(outputs)
                y_true.append(labels)

        y_prob = torch.cat(y_pred)
        y_true = torch.cat(y_true)
        y_pred_bin = (y_prob > 0.5).int()

        print(metrics.classification_report(y_true, y_pred_bin))
        print("准确率:", metrics.accuracy_score(y_true, y_pred_bin))
        print("AUC:", metrics.roc_auc_score(y_true, y_prob))

    # 训练过程
    for epoch in range(num_epoches):
        lstm.train()
        total_loss = 0
        for i, (x, labels, lengths) in enumerate(train_loader):
            x = x.to(device)
            labels = labels.to(device)
            outputs = lstm(x, lengths)
            logits = outputs.view(-1)
            loss = criterion(logits, labels)
            total_loss += loss.item()
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if (i + 1) % 10 == 0:
                print(f"epoch:{epoch + 1}, step:{i + 1}, loss:{total_loss / 10}")
                total_loss = 0

        # 测试并保存模型
        test()
        model_path = f"./model/lstm_{epoch + 1}.model"
        torch.save(lstm.state_dict(), model_path)
        print(f"Saved model: {model_path}")

    # 从 CSV 文件预测
    predict_df = pd.read_csv(PREDICT_PATH)

    if "text" not in predict_df.columns:
        raise ValueError("CSV 文件中必须包含 'text' 列")

    predict_texts = []
    for s in predict_df["text"].apply(processing).tolist():
        vectors = [word2vec.wv[w] for w in s.split(" ") if w in word2vec.wv.key_to_index]
        predict_texts.append(torch.Tensor(vectors))

    x, _, lengths = collate_fn(list(zip(predict_texts, [-1] * len(predict_texts))))
    x = x.to(device)
    outputs = lstm(x, lengths)
    outputs = outputs.view(-1).tolist()

    predict_df["prediction"] = outputs
    output_path = "model/predict/lstm.csv"
    predict_df.to_csv(output_path, index=False, encoding="utf-8")
    print(f"预测结果已保存到: {output_path}")

SVM:import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn import svm
from sklearn import metrics
from utils import load_corpus, stopwords, processing

# 文件路径
TRAIN_PATH = "./data/weibo2018/train.txt"
TEST_PATH = "./data/weibo2018/test.txt"
PREDICT_PATH = "model/labeled_comments.csv"

if __name__ == "__main__":
    # 加载训练集和测试集
    train_data = load_corpus(TRAIN_PATH)
    test_data = load_corpus(TEST_PATH)

    # 将训练集和测试集转换为 DataFrame
    df_train = pd.DataFrame(train_data, columns=["words", "label"])
    df_test = pd.DataFrame(test_data, columns=["words", "label"])

    # 查看训练集数据
    print("训练集示例:")
    print(df_train.head())

    # 使用 TfidfVectorizer 对文本进行向量化
    vectorizer = TfidfVectorizer(token_pattern=r'\[?\w+\]?', stop_words=stopwords)

    # 转换训练集文本为特征向量
    X_train = vectorizer.fit_transform(df_train["words"])
    y_train = df_train["label"]

    # 转换测试集文本为特征向量
    X_test = vectorizer.transform(df_test["words"])
    y_test = df_test["label"]

    # 使用 SVM 训练模型
    clf = svm.SVC()
    clf.fit(X_train, y_train)

    # 在测试集上进行预测
    y_pred = clf.predict(X_test)

    # 输出测试集效果评估
    print("测试集分类报告:")
    print(metrics.classification_report(y_test, y_pred))
    print("准确率:", metrics.accuracy_score(y_test, y_pred))

    # 从 CSV 文件加载预测文本
    predict_df = pd.read_csv(PREDICT_PATH)

    # 确保测试文本列存在并进行预处理
    if "Comment" not in predict_df.columns:
        raise ValueError("CSV 文件中必须包含 'Comment' 列")

    predict_texts = predict_df["Comment"].apply(processing).tolist()

    # 转换测试文本为特征向量
    vec = vectorizer.transform(predict_texts)

    # 预测并输出结果
    predictions = clf.predict(vec)
    predict_df["prediction"] = predictions

    # 保存预测结果到 CSV 文件
    output_path = "model/predict/svm.csv"
    predict_df.to_csv(output_path, index=False, encoding="utf-8")
    print(f"预测结果已保存到: {output_path}")

XBG
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn import metrics
import xgboost as xgb
from utils import load_corpus, stopwords, processing

# 文件路径
TRAIN_PATH = "./data/weibo2018/train.txt"
TEST_PATH = "./data/weibo2018/test.txt"
PREDICT_PATH = "model/labeled_comments.csv"

if __name__ == "__main__":
    # 加载训练集和测试集
    train_data = load_corpus(TRAIN_PATH)
    test_data = load_corpus(TEST_PATH)

    # 将训练集和测试集转换为 DataFrame
    df_train = pd.DataFrame(train_data, columns=["words", "label"])
    df_test = pd.DataFrame(test_data, columns=["words", "label"])

    # 查看训练集数据
    print("训练集示例:")
    print(df_train.head())

    # 使用 CountVectorizer 对文本进行向量化
    vectorizer = CountVectorizer(token_pattern=r'\[?\w+\]?', stop_words=stopwords, max_features=2000)

    # 转换训练集文本为特征向量
    X_train = vectorizer.fit_transform(df_train["words"])
    y_train = df_train["label"]

    # 转换测试集文本为特征向量
    X_test = vectorizer.transform(df_test["words"])
    y_test = df_test["label"]

    # 使用 XGBoost 训练模型
    param = {
        'booster': 'gbtree',
        'max_depth': 6,
        'scale_pos_weight': 0.5,
        'colsample_bytree': 0.8,
        'objective': 'binary:logistic',
        'eval_metric': 'error',
        'eta': 0.3,
        'nthread': 10,
    }

    # 创建 DMatrix
    dmatrix_train = xgb.DMatrix(X_train.tocsr(), label=y_train)
    model = xgb.train(param, dmatrix_train, num_boost_round=200)

    # 在测试集上用模型预测结果
    dmatrix_test = xgb.DMatrix(X_test.tocsr())
    y_pred = model.predict(dmatrix_test)

    # 测试集效果检验
    # 计算 AUC
    auc_score = metrics.roc_auc_score(y_test, y_pred)
    # 将预测概率转换为 0/1
    y_pred_binary = (y_pred > 0.5).astype(int)

    # 打印分类报告和其他指标
    print(metrics.classification_report(y_test, y_pred_binary))
    print("准确率:", metrics.accuracy_score(y_test, y_pred_binary))
    print("AUC:", auc_score)

    # 从 CSV 文件加载预测文本
    predict_df = pd.read_csv(PREDICT_PATH)

    # 确保测试文本列存在并进行预处理
    if "Comment" not in predict_df.columns:
        raise ValueError("CSV 文件中必须包含 'Comment' 列")

    predict_texts = predict_df["Comment"].apply(processing).tolist()

    # 转换预测文本为特征向量
    vec = vectorizer.transform(predict_texts)

    # 转换为 DMatrix
    dmatrix = xgb.DMatrix(vec)

    # 预测并输出结果
    predictions = model.predict(dmatrix)
    predict_df["prediction"] = predictions

    # 保存预测结果到 CSV 文件
    output_path = "model/predict/xbg.csv"
    predict_df.to_csv(output_path, index=False, encoding="utf-8")
    print(f"预测结果已保存到: {output_path}")

点击查看系统整合调用代码

main.py

import os
import subprocess

from weibo_crawler.weibo_crawler.update_settings import main
from nlp.text_processor import text_processor
from model.model_svm import model_svm
from data_visualization.logger_config import logger
from data_visualization.classification import classifcation
from data_visualization.wordcloud_generator import wordclouds_generator


# 改变运行目录并执行对应模块函数
def change_directory_and_execute(original_dir, directory, func, *args,
                                 is_scrapy):
    try:
        os.chdir(os.path.join(original_dir, directory))
        func(*args)
        if is_scrapy:
            try:
                subprocess.run(['scrapy', 'crawl', 'search'], check=True)
            except subprocess.CalledProcessError as e:
                logger.error(f"Error executing Scrapy command: {e}")
    except Exception as e:
        logger.error(f"Error in {directory}: {e}")
        return False
    finally:
        os.chdir(original_dir)
    return True


# 整合调用各个模块
def emotion_analyzer(cookie, keywords, start_date, end_date, regions,
                     weibo_type_input, contain_type_input):
    # 保存原始目录
    original_dir = os.getcwd()

    if not change_directory_and_execute(original_dir, 'weibo_crawler',
                                        main, cookie, keywords,
                                        start_date, end_date, regions,
                                        weibo_type_input, contain_type_input,
                                        is_scrapy=True):
        return None

    if not change_directory_and_execute(original_dir, 'nlp',
                                        text_processor,
                                        is_scrapy=False):
        return None

    if not change_directory_and_execute(original_dir, 'model',
                                        model_svm, is_scrapy=False):
        return None

    if not change_directory_and_execute(original_dir, 'data_visualization',
                                        classifcation, is_scrapy=False):
        return None

    if not change_directory_and_execute(original_dir,
                                        'data_visualization',
                                        wordclouds_generator, is_scrapy=False):
        return None

    logger.info("Emotion analysis completed successfully")
    return 1


if __name__ == "__main__":
    # 调试测试用
    user_cookie = input("请输入 Cookie: ")
    user_keywords = input("请输入关键词列表,用逗号分隔: ")
    user_start_date = input("请输入搜索的起始日期(格式 yyyy-mm-dd):")
    user_end_date = input("请输入搜索的终止日期(格式 yyyy-mm-dd):")
    user_regions = input("请输入想要筛选的微博发布的地区,用逗号分隔:")
    user_weibo_type_input = input(
        "请输入微博类型(全部微博,全部原创微博,热门微博,关注人微博,认证用户微博"
        ",媒体微博,观点微博): ")
    user_contain_type_input = input(
        "请输入筛选类型(不筛选,包含图片,包含视频,包含音乐,包含短链接): ")

    result = emotion_analyzer(user_cookie, user_keywords, user_start_date,
                              user_end_date, user_regions,
                              user_weibo_type_input, user_contain_type_input)
    if result == 1:
        print("成功!")
    else:
        logger.info("情绪分析未成功完成")

4.2、各更新模块/系统的运行截图

用户交互模块


数据预处理模块


情感分析模块


系统调用整合


5、每人每日总结

团队成员 每日总结
梁恬 完成最终整合,但还没进行全面的测试与正常运行通过,之后的测试与发布一周中会进一步优化与改进,并尝试进行互联网的部署
潘思言 完成了用户差错处理,避免起始日期大于终止日期等情况的发生
张颢严 完成了 LSTM 模型的优化与训练,解决了空序列导致的训练中断问题,并对数据集预处理逻辑进行了改进。同时初步搭建了 SVM 和 XGBoost 模型,待后续完善与调试
王睿娴 对前几日的工作进行了一个复盘总结

posted @ 2024-11-11 15:39  Double_T_恬  阅读(31)  评论(0编辑  收藏  举报