poj 1065 Wooden Sticks (dp)

问题给出n个木头, 每个木有有li , wi的属性, 如果后一根木头的li>=li-1 且wi>=w-1 那么不需要等加工时间, 否则加1.

第一根木头总要1个时间的加工时间,问最少需要多少时间

 

首先根据木头的某一个属性排序, 然后求 最长下降子序列( 等于求出最长不下降的 个数)

 

 

题目:

Wooden Sticks
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 17044   Accepted: 7121

Description

There is a pile of n wooden sticks. The length and weight of each stick are known in advance. The sticks are to be processed by a woodworking machine in one by one fashion. It needs some time, called setup time, for the machine to prepare processing a stick. The setup times are associated with cleaning operations and changing tools and shapes in the machine. The setup times of the woodworking machine are given as follows:
(a) The setup time for the first wooden stick is 1 minute.
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l <= l' and w <= w'. Otherwise, it will need 1 minute for setup.
You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are ( 9 , 4 ) , ( 2 , 5 ) , ( 1 , 2 ) , ( 5 , 3 ) , and ( 4 , 1 ) , then the minimum setup time should be 2 minutes since there is a sequence of pairs ( 4 , 1 ) , ( 5 , 3 ) , ( 9 , 4 ) , ( 1 , 2 ) , ( 2 , 5 ) .

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case consists of two lines: The first line has an integer n , 1 <= n <= 5000 , that represents the number of wooden sticks in the test case, and the second line contains 2n positive integers l1 , w1 , l2 , w2 ,..., ln , wn , each of magnitude at most 10000 , where li and wi are the length and weight of the i th wooden stick, respectively. The 2n integers are delimited by one or more spaces.

Output

The output should contain the minimum setup time in minutes, one per line.

Sample Input

3 
5 
4 9 5 2 2 1 3 5 1 4 
3 
2 2 1 1 2 2 
3 
1 3 2 2 3 1 

Sample Output

2
1
3

Source

 
 
代码:
 1 #include <iostream>
 2 #include <cstring>
 3 #include <algorithm>
 4 using namespace std;
 5 
 6 int n;
 7 
 8 struct W
 9 {
10         int l, w;
11         bool operator < (const W &x )const
12         {
13             if( w< x.w)
14                 return true;
15             else if ( w == x.w && l < x.l)
16                 return true;
17 
18 
19             return false;
20         }
21 };
22 
23 W w[5000+10];
24 int dp[10000+10];
25 void init()
26 {
27     cin>>n;
28 
29     for(int i=0;i<=n;i++)
30     {
31         dp[i] = 0;
32     }
33     for(int i=0;i<n;i++)
34     {
35         cin>>w[i].l>>w[i].w;
36     }
37     sort(w,w+n);
38 }
39 int main()
40 {
41 
42     int tst;
43     cin>>tst;
44     while(tst--)
45     {
46         init();
47         int cnt = 0;
48         for(int i=0;i<n;i++)
49         {
50             dp[i] =1;
51             for(int j=0;j<i;j++)
52             {
53                 if( w[j].l>w[i].l)
54                 {
55                     dp[i] = max(dp[i],dp[j]+1);
56                 }
57                 cnt = max( cnt, dp[i]);
58             }
59 
60         }
61         cout<<cnt<<endl;
62     }
63 
64 
65     return 0;
66 }

 

 

posted @ 2014-02-05 22:52  doubleshik  阅读(184)  评论(0编辑  收藏  举报