LaTex in Markdown

 

上次写了Markdown,这次用到了LaTex,也出一期(吐槽,工作量比Markdown高太多...)

Markdown基础:https://www.cnblogs.com/dotnetcrazy/p/9180295.html

博客园LaTex开启:https://www.cnblogs.com/dotnetcrazy/p/9283971.html

在线预览:http://github.lesschina.com/python/ai/math/LaTex in Markdown.html

1.样式系列

1.1.换行\\、空格\:

$换行\\萌萌哒\:小明$

$换行\\萌萌哒\:小明$


1.2.居中$$**$$

$$萌萌哒$$

$$萌萌哒$$


1.3.加粗(mathbf)、斜体(mathit)

$\mathbf{萌萌哒}$

$\mathit{小明}$

$\mathbf{萌萌哒}$

$\mathit{小明}$


1.4.大小

$\tiny 萌萌哒$

$\scriptsize 萌萌哒$

$\small 萌萌哒$

$\normalsize 萌萌哒(正常)$

$\large 萌萌哒$

$\Large 萌萌哒$

$\huge 萌萌哒$

$\Huge 萌萌哒$

$\tiny 萌萌哒$

$\scriptsize 萌萌哒$

$\small 萌萌哒$

$\normalsize 萌萌哒(正常)$

$\large 萌萌哒$

$\Large 萌萌哒$

$\huge 萌萌哒$

$\Huge 萌萌哒$

如果是单行写,记得加换行符号:

$\tiny 萌萌哒\\$
$\scriptsize 萌萌哒\\$
$\small 萌萌哒\\$
$\normalsize 萌萌哒(正常)\\$
$\large 萌萌哒\\$
$\Large 萌萌哒\\$
$\huge 萌萌哒\\$
$\Huge 萌萌哒\\$

1.5.颜色(有些编辑器不支持)

${\color[RGB]{255,0,0} Red}\\$
${\color[RGB]{30,144,255} Dodg Blue}\\$
${\color[RGB]{0,255,255} Aqua}\\$
${\color[RGB]{255,165,0} Orange}\\$
${\color[RGB]{255,69,0} Orange red}\\$
${\color[RGB]{0,128,0} Green}\\$
${\color[RGB]{128,128,128} Gray}\\$
${\color[RGB]{255,0,255} Magenta}\\$
${\color[RGB]{128,0,128} Purple}\\$
${\color[RGB]{184,134,11} Dark Gold}$

${\color[RGB]{255,69,0} Orange red}$

 

2.常用数学

2.1.常用表达式

常用数学LaTex公式
$\sqrt{ab}$ $\sqrt{ab}$
$\sqrt[n]{ab}$ $\sqrt[n]{ab}$
$\log_{a}{b}$ $\log_{a}{b}$
$\lg{ab}$ $\lg{ab}$
$a^{b}$ $a^{b}$
$a_{b}$ $a_{b}$
$x_a^b$ $x_a^b$
$\int$ $\int$
$\int_{a}^{b}$ $\int_{a}^{b}$
$\oint$ $\oint$
$\oint_a^b$ $\oint_a^b$
$\sum$ $\sum$
$\sum_a^b$ $\sum_a^b$
$\coprod$ $\coprod$
$\coprod_a^b$ $\coprod_a^b$
$\prod$ $\prod$
$\prod_a^b$ $\prod_a^b$
$\bigcap$ $\bigcap$
$\bigcap_a^b$ $\bigcap_a^b$
$\bigcup$ $\bigcup$
$\bigcup_a^b$ $\bigcup_a^b$
$\bigsqcup$ $\bigsqcup$
$\bigsqcup_a^b$ $\bigsqcup_a^b$
$\bigvee$ $\bigvee$
$\bigvee_a^b$ $\bigvee_a^b$
$\bigwedge$ $\bigwedge$
$\bigwedge_a^b$ $\bigwedge_a^b$
$\widetilde{ab}$ $\widetilde{ab}$
$\widehat{ab}$ $\widehat{ab}$
$\overleftarrow{ab}$ $\overleftarrow{ab}$
$\overrightarrow{ab}$ $\overrightarrow{ab}$
$\overbrace{ab}$ $\overbrace{ab}$
$\underbrace{ab}$ $\underbrace{ab}$
$\underline{ab}$ $\underline{ab}$
$\overline{ab}$ $\overline{ab}$
$\frac{ab}{cd}$ $\frac{ab}{cd}$
$\frac{\partial a}{\partial b}$ $\frac{\partial a}{\partial b}$
$\frac{\text{d}x}{\text{d}y}$ $\frac{\text{d}x}{\text{d}y}$
$\lim_{a \rightarrow b}$ $\lim_{a \rightarrow b}$
 

2.2.附录:数学公式大全

数学公式LaTex公式
$\displaystyle\sum\limits_{i=0}^n i^3$ $\displaystyle\sum\limits_{i=0}^n i^3$
$\left(\begin{array}{c}a\\ b\end{array}\right)$ $\left(\begin{array}{c}a\\ b\end{array}\right)$
$\left(\frac{a^2}{b^3}\right)$ $\left(\frac{a^2}{b^3}\right)$
$\left.\frac{a^3}{3}\right\lvert_0^1$ $\left.\frac{a^3}{3}\right\lvert_0^1$
$\begin{bmatrix}a & b \\c & d \end{bmatrix}$ $\begin{bmatrix}a & b \\c & d \end{bmatrix}$
$\begin{cases}a & x = 0\\b & x > 0\end{cases}$ $\begin{cases}a & x = 0\\b & x > 0\end{cases}$
$\sqrt{\frac{n}{n-1} S}$ $\sqrt{\frac{n}{n-1} S}$
$\begin{pmatrix} \alpha& \beta^{*}\\ \gamma^{*}& \delta \end{pmatrix}$ $\begin{pmatrix} \alpha& \beta^{*}\\ \gamma^{*}& \delta \end{pmatrix}$
$A\:\xleftarrow{n+\mu-1}\:B$ $A\:\xleftarrow{n+\mu-1}\:B$
$B\:\xrightarrow[T]{n\pm i-1}\:C$ $B\:\xrightarrow[T]{n\pm i-1}\:C$
$\frac{1}{k}\log_2 c(f)\;$ $\frac{1}{k}\log_2 c(f)\;$
$\iint\limits_A f(x,y)\;$ $\iint\limits_A f(x,y)\;$
$x^n + y^n = z^n$ $x^n + y^n = z^n$
$E=mc^2$ $E=mc^2$
$e^{\pi i} - 1 = 0$ $e^{\pi i} - 1 = 0$
$p(x) = 3x^6$ $p(x) = 3x^6$
$3x + y = 12$ $3x + y = 12$
$\int_0^\infty \mathrm{e}^{-x}\,\mathrm{d}x$ $\int_0^\infty \mathrm{e}^{-x}\,\mathrm{d}x$
$\sqrt[n]{1+x+x^2+\ldots}$ $\sqrt[n]{1+x+x^2+\ldots}$
$\binom{x}{y} = \frac{x!}{y!(x-y)!}$ $\binom{x}{y} = \frac{x!}{y!(x-y)!}$
$\frac{\frac{1}{x}+\frac{1}{y}}{y-z}$ $\frac{\frac{1}{x}+\frac{1}{y}}{y-z}$
$f(x)=\frac{P(x)}{Q(x)}$ $f(x)=\frac{P(x)}{Q(x)}$
$\frac{1+\frac{a}{b}}{1+\frac{1}{1+\frac{1}{a}}}$ $\frac{1+\frac{a}{b}}{1+\frac{1}{1+\frac{1}{a}}}$
$\sum_{\substack{0\le i\le m\\ 0\lt j\lt n}} P(i,j)$ $\sum_{\substack{0\le i\le m\\ 0\lt j\lt n}} P(i,j)$
$\lim_{x \to \infty} \exp(-x) = 0$ $\lim_{x \to \infty} \exp(-x) = 0$
$\cos (2\theta) = \cos^2 \theta - \sin^2 \theta$ $\cos (2\theta) = \cos^2 \theta - \sin^2 \theta$
 

3.数学符号

3.1.集合系列

运算符公式运算符公式运算符公式
$\emptyset$ $\emptyset$ $\in$ $\in$ $\notin$ $\notin$
$\subset$ $\subset$ $\supset$ $\supset$ $\subseteq$ $\subseteq$
$\nsubseteq$ $\nsubseteq$ $\nsupseteq$ $\nsupseteq$ $\nsubseteqq$ $\nsubseteqq$
$\nsupseteqq$ $\nsupseteqq$ $\subsetneq$ $\subsetneq$ $\supsetneq$ $\supsetneq$
$\subsetneqq$ $\subsetneqq$ $\supsetneqq$ $\supsetneqq$ $\varsubsetneq$ $\varsubsetneq$
$\varsupsetneq$ $\varsupsetneq$ $\varsubsetneqq$ $\varsubsetneqq$ $\varsupsetneqq$ $\varsupsetneqq$
$\bigcap$ $\bigcap$ $\bigcup$ $\bigcup$ $\bigvee$ $\bigvee$
$\bigwedge$ $\bigwedge$ $\biguplus$ $\biguplus$ $\bigsqcup$ $\bigsqcup$
$\Subset$ $\Subset$ $\Supset$ $\Supset$ $\subseteqq$ $\subseteqq$
$\supseteqq$ $\supseteqq$ $\sqsubset$ $\sqsubset$ $\sqsupset$ $\sqsupset$

3.2.常用符号

基本符号公式基本符号公式基本符号公式
$\cdot$ $\cdot$ $\vdots$ $\vdots$ $\grave{x}$ $\grave{x}$
$.$ $.$ $\ddots$ $\ddots$ $\breve{x}$ $\breve{x}$
$*$ $*$ $,$ $,$ $\dot{x}$ $\dot{x}$
$+$ $+$ $!$ $!$ $\widehat{xxx}$ $\widehat{xxx}$
$-$ $-$ $;$ $;$ $\ddot{x}$ $\ddot{x}$
$\times$ $\times$ $?$ $?$ $\check{x}$ $\check{x}$
$\div$ $\div$ $\colon$ $\colon$ $\ddot{x}$ $\ddot{x}$
$=$ $=$ $\acute{x}$ $\acute{x}$ $\tilde{x}$ $\tilde{x}$
$\neq$ $\neq$ $\bar{x}$ $\bar{x}$ $\hat{x}$ $\hat{x}$
$\dotsm$ $\dotsm$ $\vec{x}$ $\vec{x}$ $\dddot{x}$ $\dddot{x}$
$\dotso$ $\dotso$ $\widetilde{xxx}$ $\widetilde{xxx}$ $\backslash$ $\backslash$
$/$ $/$ $\bracevert$ $\bracevert$ $]$ $]$
$\smallsetminus$ $\smallsetminus$ $\lVert$ $\lVert$ $\lbrace$ $\lbrace$
$\arrowvert$ $\arrowvert$ $\rVert$ $\rVert$ $\rbrace$ $\rbrace$
$\lvert$ $\lvert$ $\lgroup$ $\lgroup$ $\langle$ $\langle$
$\lvert$ $\lvert$ $\rgroup$ $\rgroup$ $\rangle$ $\rangle$
$\rvert$ $\rvert$ $[$ $[$ $\lmoustache$ $\lmoustache$
$\rmoustache$ $\rmoustache$ $\lceil$ $\lceil$ $\rceil$ $\rceil$
$\lfloor$ $\lfloor$ $\rfloor$ $\rfloor$

3.3.希腊字母表

字母公式字母公式字母公式
$\alpha$ $\alpha$ $\beta$ $\beta$ $\chi$ $\chi$
$\delta$ $\delta$ $\Delta$ $\Delta$ $\epsilon$ $\epsilon$
$\eta$ $\eta$ $\Gamma$ $\Gamma$ $\iota$ $\iota$
$\kappa$ $\kappa$ $\lambda$ $\lambda$ $\Lambda$ $\Lambda$
$\mu$ $\mu$ $\nabla$ $\nabla$ $\nu$ $\nu$
$\omega$ $\omega$ $\Omega$ $\Omega$ $\phi$ $\phi$
$\Phi$ $\Phi$ $\pi$ $\pi$ $\Pi$ $\Pi$
$\psi$ $\psi$ $\Psi$ $\Psi$ $\rho$ $\rho$
$\sigma$ $\sigma$ $\Sigma$ $\Sigma$ $\tau$ $\tau$
$\theta$ $\theta$ $\Theta$ $\Theta$ $\upsilon$ $\upsilon$
$\varepsilon$ $\varepsilon$ $\varsigma$ $\varsigma$ $\vartheta$ $\vartheta$
$\xi$ $\xi$ $\zeta$ $\zeta$

3.4.函数公式表

函数公式函数公式函数公式
$\sin$ $\sin$ $\sin^{-1}$ $\sin^{-1}$ $\inf$ $\inf$
$\cos$ $\cos$ $\cos^{-1}$ $\cos^{-1}$ $\arg$ $\arg$
$\tan$ $\tan$ $\tan^{-1}$ $\tan^{-1}$ $\det$ $\det$
$\sinh$ $\sinh$ $\sinh^{-1}$ $\sinh^{-1}$ $\dim$ $\dim$
$\cosh$ $\cosh$ $\cosh^{-1}$ $\cosh^{-1}$ $\gcd$ $\gcd$
$\tanh$ $\tanh$ $\tanh^{-1}$ $\tanh^{-1}$ $\hom$ $\hom$
$\csc$ $\csc$ $\exp$ $\exp$ $\ker$ $\ker$
$\sec$ $\sec$ $\lg$ $\lg$ $\Pr$ $\Pr$
$\cot$ $\cot$ $\ln$ $\ln$ $\sup$ $\sup$
$\coth$ $\coth$ $\log$ $\log$ $\deg$ $\deg$
$\hom$ $\hom$ $\log_{e}$ $\log_{e}$ $\injlim$ $\injlim$
$\arcsin$ $\arcsin$ $\log_{10}$ $\log_{10}$ $\varinjlim$ $\varinjlim$
$\arccos$ $\arccos$ $\lim$ $\lim$ $\varprojlim$ $\varprojlim$
$\det$ $\det$ $\liminf$ $\liminf$ $\varliminf$ $\varliminf$
$\arctan$ $\arctan$ $\limsup$ $\limsup$ $\projlim$ $\projlim$
$\textrm{arccsc}$ $\textrm{arccsc}$ $\max$ $\max$ $\varlimsup$ $\varlimsup$
$\textrm{arcsec}$ $\textrm{arcsec}$ $\min$ $\min$
$\textrm{arccot}$ $\textrm{arccot}$ $\infty$ $\infty$

3.5.特殊符号-箭头系列


箭头公式箭头公式箭头公式
$\uparrow$ $\uparrow$ $\longleftarrow$ $\longleftarrow$ $\downdownarrows$ $\downdownarrows$
$\downarrow$ $\downarrow$ $\longrightarrow$ $\longrightarrow$ $\upuparrows$ $\upuparrows$
$\updownarrow$ $\updownarrow$ $\rightarrow$ $\rightarrow$ $\rightharpoondown$ $\rightharpoondown$
$\Uparrow$ $\Uparrow$ $\leftarrow$ $\leftarrow$ $\downharpoonleft$ $\downharpoonleft$
$\Downarrow$ $\Downarrow$ $\mapsto$ $\mapsto$ $\rightharpoonup$ $\rightharpoonup$
$\Leftarrow$ $\Leftarrow$ $\nrightarrow$ $\nrightarrow$ $\downharpoonright$ $\downharpoonright$
$\Rightarrow$ $\Rightarrow$ $\nleftarrow$ $\nleftarrow$ $\upharpoonleft$ $\upharpoonleft$
$\Leftrightarrow$ $\Leftrightarrow$ $\rightrightarrows$ $\rightrightarrows$ $\upharpoonright$ $\upharpoonright$
$\nLeftrightarrow$ $\nLeftrightarrow$ $\leftleftarrows$ $\leftleftarrows$ $\leftharpoondown$ $\leftharpoondown$
$\nLeftarrow$ $\nLeftarrow$ $\rightleftarrows$ $\rightleftarrows$ $\leftharpoonup$ $\leftharpoonup$
$\nRightarrow$ $\nRightarrow$ $\leftrightarrows$ $\leftrightarrows$ $\hookleftarrow$ $\hookleftarrow$
$\Updownarrow$ $\Updownarrow$ $\curvearrowleft$ $\curvearrowleft$ $\hookrightarrow$ $\hookrightarrow$
$\circlearrowleft$ $\circlearrowleft$ $\curvearrowright$ $\curvearrowright$ $\rightleftharpoons$ $\rightleftharpoons$
$\circlearrowright$ $\circlearrowright$ $\Longleftarrow$ $\Longleftarrow$ $\leftrightharpoons$ $\leftrightharpoons$
$\Lleftarrow$ $\Lleftarrow$ $\Longrightarrow$ $\Longrightarrow$ $\looparrowleft$ $\looparrowleft$
$\Rrightarrow$ $\Rrightarrow$ $\longleftrightarrow$ $\longleftrightarrow$ $\looparrowright$ $\looparrowright$
$\nwarrow$ $\nwarrow$ $\Longleftrightarrow$ $\Longleftrightarrow$ $\rightsquigarrow$ $\rightsquigarrow$
$\swarrow$ $\swarrow$ $\longmapsto$ $\longmapsto$ $\Lsh$ $\Lsh$
$\searrow$ $\searrow$ $\rightarrowtail$ $\rightarrowtail$ $\Rsh$ $\Rsh$
$\nearrow$ $\nearrow$ $\leftarrowtail$ $\leftarrowtail$ $\multimap$ $\multimap$
$\twoheadleftarrow$ $\twoheadleftarrow$ $\twoheadrightarrow$ $\twoheadrightarrow$ $\leftrightsquigarrow$ $\leftrightsquigarrow$
$\leftrightarrow$ $\leftrightarrow$ $\nleftrightarrow$ $\nleftrightarrow$
 

4.逆天常用

逆天用到就添加进去(不定期更新)根据上面有的,这些其实都可以自己写出来的

4.1.二次方程求解

$\mathbf{a*x^2+b*x+c}$

$$x={\frac{-b \pm \sqrt{b^2-4ac}}{2a}}$$ or $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}$$

$\mathbf{a*x^2+b*x+c}$

$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}$$


4.2.矩阵系列

$$
\begin{bmatrix}
1&0&0 \\
0&1&0 \\
0&0&1
\end{bmatrix}
$$

$$ \begin{bmatrix} 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{bmatrix} $$


posted @ 2018-07-11 10:21  鲲逸鹏  阅读(1421)  评论(1编辑  收藏  举报