Java8 Stream 之groupingBy 分组,计数和排序

例1:

  1 public class GroupBy {
  2 
  3     List<Employee> employees = new ArrayList<>();
  4 
  5     /**
  6      * 数据初始化
  7      */
  8     public void init() {
  9         List<String> citys = Arrays.asList("湖南", "湖北", "四川", "广东 ");
 10         for (int i = 0; i < 10; i++) {
 11             Random random = new Random();
 12             Integer index = random.nextInt(4);
 13             Employee employee = new Employee(citys.get(index), "姓名" + i, (random.nextInt(4) * 10 - random.nextInt(4)),
 14                     (random.nextInt(4) * 1000 - random.nextInt(4)));
 15             employees.add(employee);
 16         }
 17     }
 18 
 19     /**
 20      * 使用java8 stream groupingBy操作,按城市分组list
 21      */
 22     public void groupingByCity() {
 23         Map<String, List<Employee>> map = employees.stream().collect(Collectors.groupingBy(Employee::getCity));
 24 
 25         map.forEach((k, v) -> System.out.println(k + " = " + v));
 26         //四川 = [GroupBy.Employee(city=四川, name=姓名1, age=30, amount=999), GroupBy.Employee(city=四川, name=姓名2, age=8, amount=2000), GroupBy.Employee(city=四川, name=姓名3, age=30, amount=2997)]
 27         //湖南 = [GroupBy.Employee(city=湖南, name=姓名7, age=30, amount=-3), GroupBy.Employee(city=湖南, name=姓名8, age=19, amount=1998)]
 28         //湖北 = [GroupBy.Employee(city=湖北, name=姓名4, age=29, amount=-2), GroupBy.Employee(city=湖北, name=姓名5, age=10, amount=1997)]
 29         //广东  = [GroupBy.Employee(city=广东 , name=姓名0, age=28, amount=1998), GroupBy.Employee(city=广东 , name=姓名6, age=29, amount=1998), GroupBy.Employee(city=广东 , name=姓名9, age=7, amount=1000)]
 30     }
 31 
 32     /**
 33      * 使用java8 stream groupingBy操作,按城市分组list统计count
 34      */
 35     public void groupingByCount() {
 36         Map<String, Long> map = employees.stream()
 37                 .collect(Collectors.groupingBy(Employee::getCity, Collectors.counting()));
 38 
 39         map.forEach((k, v) -> System.out.println(k + " = " + v));
 40         //四川 = 1
 41         //湖北 = 3
 42         //湖南 = 4
 43         //广东  = 2
 44     }
 45 
 46     /**
 47      * 使用java8 stream groupingBy操作,按城市分组list并计算分组年龄平均值
 48      */
 49     public void groupingByAverage() {
 50         Map<String, Double> map = employees.stream()
 51                 .collect(Collectors.groupingBy(Employee::getCity, Collectors.averagingInt(Employee::getAge)));
 52 
 53         map.forEach((k, v) -> System.out.println(k + " = " + v));
 54         //四川 = 15.0
 55         //湖北 = 21.25
 56         //湖南 = 18.333333333333332
 57         //广东  = 9.0
 58     }
 59 
 60     /**
 61      * 使用java8 stream groupingBy操作,按城市分组list并计算分组销售总值
 62      */
 63     public void groupingBySum() {
 64         Map<String, Long> map = employees.stream()
 65                 .collect(Collectors.groupingBy(Employee::getCity, Collectors.summingLong(Employee::getAmount)));
 66 
 67         map.forEach((k, v) -> System.out.println(k + " = " + v));
 68         //四川 = 3995
 69         //湖北 = 2995
 70         //湖南 = 999
 71         //广东  = 8994
 72 
 73         // 对Map按照分组销售总值逆序排序
 74         Map<String, Long> sortedMap = new LinkedHashMap<>();
 75         map.entrySet().stream().sorted(Map.Entry.<String, Long> comparingByValue().reversed())
 76                 .forEachOrdered(e -> sortedMap.put(e.getKey(), e.getValue()));
 77 
 78         sortedMap.forEach((k, v) -> System.out.println(k + " = " + v));
 79         //广东  = 8994
 80         //四川 = 3995
 81         //湖北 = 2995
 82         //湖南 = 999
 83     }
 84 
 85 
 86     /**
 87      * 使用java8 stream groupingBy操作,按城市分组list并通过join操作连接分组list中的对象的name 属性使用逗号分隔
 88      */
 89     public void groupingByString() {
 90         Map<String, String> map = employees.stream().collect(Collectors.groupingBy(Employee::getCity,
 91                 Collectors.mapping(Employee::getName, Collectors.joining(", ", "Names: [", "]"))));
 92 
 93         map.forEach((k, v) -> System.out.println(k + " = " + v));
 94         //四川 = Names: [姓名8]
 95         //湖南 = Names: [姓名1, 姓名2, 姓名7]
 96         //湖北 = Names: [姓名0, 姓名3, 姓名6, 姓名9]
 97         //广东  = Names: [姓名4, 姓名5]
 98     }
 99 
100     /**
101      * 使用java8 stream groupingBy操作,按城市分组list,将List转化为name的List
102      */
103     public void groupingByList() {
104         Map<String, List<String>> map = employees.stream().collect(
105                 Collectors.groupingBy(Employee::getCity, Collectors.mapping(Employee::getName, Collectors.toList())));
106 
107         map.forEach((k, v) -> {
108             System.out.println(k + " = " + v);
109             v.forEach(item -> System.out.println("item = " + item));
110         });
111         //四川 = [姓名6]
112         //item = 姓名6
113         //湖北 = [姓名2, 姓名5, 姓名7]
114         //item = 姓名2
115         //item = 姓名5
116         //item = 姓名7
117         //湖南 = [姓名0, 姓名1, 姓名3, 姓名4]
118         //item = 姓名0
119         //item = 姓名1
120         //item = 姓名3
121         //item = 姓名4
122         //广东  = [姓名8, 姓名9]
123         //item = 姓名8
124         //item = 姓名9
125     }
126 
127     /**
128      * 使用java8 stream groupingBy操作,按城市分组list,将List转化为name的Set
129      */
130     public void groupingBySet() {
131         Map<String, Set<String>> map = employees.stream().collect(
132                 Collectors.groupingBy(Employee::getCity, Collectors.mapping(Employee::getName, Collectors.toSet())));
133 
134         map.forEach((k, v) -> {
135             System.out.println(k + " = " + v);
136             v.forEach(item -> System.out.println("item = " + item));
137         });
138     }
139 
140     /**
141      * 使用java8 stream groupingBy操作,通过Object对象的成员分组List
142      */
143     public void groupingByObject() {
144         Map<Manage, List<Employee>> map = employees.stream().collect(Collectors.groupingBy(item -> new Manage(item.getName())));
145 
146         map.forEach((k, v) -> System.out.println(k + " = " + v));
147         //GroupBy.Manage(name=姓名9) = [GroupBy.Employee(city=广东 , name=姓名9, age=19, amount=2998)]
148         //GroupBy.Manage(name=姓名8) = [GroupBy.Employee(city=四川, name=姓名8, age=-2, amount=3000)]
149         //GroupBy.Manage(name=姓名7) = [GroupBy.Employee(city=广东 , name=姓名7, age=8, amount=2999)]
150         //GroupBy.Manage(name=姓名2) = [GroupBy.Employee(city=广东 , name=姓名2, age=10, amount=0)]
151         //GroupBy.Manage(name=姓名1) = [GroupBy.Employee(city=四川, name=姓名1, age=-1, amount=1998)]
152         //GroupBy.Manage(name=姓名0) = [GroupBy.Employee(city=湖南, name=姓名0, age=17, amount=1997)]
153         //GroupBy.Manage(name=姓名6) = [GroupBy.Employee(city=湖北, name=姓名6, age=9, amount=1000)]
154         //GroupBy.Manage(name=姓名5) = [GroupBy.Employee(city=湖北, name=姓名5, age=8, amount=1000)]
155         //GroupBy.Manage(name=姓名4) = [GroupBy.Employee(city=湖南, name=姓名4, age=-3, amount=3000)]
156         //GroupBy.Manage(name=姓名3) = [GroupBy.Employee(city=广东 , name=姓名3, age=17, amount=1999)]
157     }
158 
159     /**
160      * 使用java8 stream groupingBy操作, 基于city 和name 实现多次分组
161      */
162     public void groupingBys() {
163         Map<String, Map<String, List<Employee>>> map = employees.stream()
164                 .collect(Collectors.groupingBy(Employee::getCity, Collectors.groupingBy(Employee::getName)));
165 
166         map.forEach((k, v) -> {
167             System.out.println(k + " = " + v);
168             v.forEach((i, j) -> System.out.println(i + " = " + j));
169         });
170         //四川 = {姓名6=[GroupBy.Employee(city=四川, name=姓名6, age=-3, amount=997)]}
171         //姓名6 = [GroupBy.Employee(city=四川, name=姓名6, age=-3, amount=997)]
172 
173         //湖南 = {姓名5=[GroupBy.Employee(city=湖南, name=姓名5, age=-2, amount=0)]}
174         //姓名5 = [GroupBy.Employee(city=湖南, name=姓名5, age=-2, amount=0)]
175 
176         //湖北 = {姓名4=[GroupBy.Employee(city=湖北, name=姓名4, age=10, amount=-2)], 姓名3=[GroupBy.Employee(city=湖北, name=姓名3, age=8, amount=997)], 姓名2=[GroupBy.Employee(city=湖北, name=姓名2, age=8, amount=999)], 姓名9=[GroupBy.Employee(city=湖北, name=姓名9, age=29, amount=-2)], 姓名1=[GroupBy.Employee(city=湖北, name=姓名1, age=30, amount=2000)]}
177         //姓名4 = [GroupBy.Employee(city=湖北, name=姓名4, age=10, amount=-2)]
178         //姓名3 = [GroupBy.Employee(city=湖北, name=姓名3, age=8, amount=997)]
179         //姓名2 = [GroupBy.Employee(city=湖北, name=姓名2, age=8, amount=999)]
180         //姓名9 = [GroupBy.Employee(city=湖北, name=姓名9, age=29, amount=-2)]
181         //姓名1 = [GroupBy.Employee(city=湖北, name=姓名1, age=30, amount=2000)]
182 
183         //广东  = {姓名8=[GroupBy.Employee(city=广东 , name=姓名8, age=-1, amount=-3)], 姓名7=[GroupBy.Employee(city=广东 , name=姓名7, age=29, amount=998)], 姓名0=[GroupBy.Employee(city=广东 , name=姓名0, age=0, amount=2999)]}
184         //姓名8 = [GroupBy.Employee(city=广东 , name=姓名8, age=-1, amount=-3)]
185         //姓名7 = [GroupBy.Employee(city=广东 , name=姓名7, age=29, amount=998)]
186         //姓名0 = [GroupBy.Employee(city=广东 , name=姓名0, age=0, amount=2999)]
187     }
188 
189     /**
190      * 使用java8 stream groupingBy操作, 基于Distinct 去重数据
191      */
192     public void groupingByDistinct() {
193         List<Employee> list = employees.stream().filter(distinctByKey(Employee :: getCity))
194                 .collect(Collectors.toList());
195 
196         list.forEach(item-> System.out.println("city = " + item.getCity()));
197         //city = 湖南
198         //city = 湖北
199         //city = 四川
200         //city = 广东
201     }
202 
203     /**
204      * 自定义重复key 规则
205      */
206     private static <T> Predicate<T> distinctByKey(Function<? super T, ?> keyExtractor) {
207         Set<Object> seen = ConcurrentHashMap.newKeySet();
208         return t -> seen.add(keyExtractor.apply(t));
209     }
210 
211     public static void main(String[] args) {
212         GroupBy instance = new GroupBy();
213         instance.init();
214         instance.groupingByCity();
215         instance.groupingByCount();
216         instance.groupingByAverage();
217         instance.groupingBySum();
218         instance.groupingByString();
219         instance.groupingByList();
220         instance.groupingBySet();
221         instance.groupingByObject();
222         instance.groupingBys();
223         instance.groupingByDistinct();
224 
225     }
226 
227     @Data
228     @NoArgsConstructor
229     @AllArgsConstructor
230     class Employee {
231         private String city;
232         private String name;
233         private Integer age;
234         private Integer amount;
235 
236     }
237 
238     @Data
239     @NoArgsConstructor
240     @AllArgsConstructor
241     class Manage {
242         private String name;
243 
244     }
245 
246 }

 

例2:

 1 /**
 2 * 分组List并显示其总数
 3 */
 4 @Test  
 5 void test1(){
 6 //3 apple, 2 banana, others 1
 7     List items = Arrays.asList("apple", "apple", "banana", "apple", "orange", "banana", "papaya");
 8     Map<String, Long> collect = items.stream().collect(Collectors.groupingBy(Function.identity(), Collectors.counting())); 
 9     System.out.println(collect); //{papaya=1, orange=1, banana=2, apple=3}
10 }
11 
12 /**
13  * 添加排序
14  */
15 @Test
16 void test2(){
17     List<String> items = Arrays.asList("apple", "apple", "banana", "apple", "orange", "banana", "papaya");
18     Map<String, Long> map = items.stream().collect(Collectors.groupingBy(Function.identity(), Collectors.counting()));
19     Map<String, Long> finalMap = new LinkedHashMap<>();
20     map.entrySet().stream().sorted(Map.Entry.<String, Long>comparingByValue().reversed()).forEachOrdered(e->finalMap.put(e.getKey(),e.getValue()));
21 
22     System.out.println(finalMap); //{apple=3, banana=2, papaya=1, orange=1}
23 }
24 
25 /**
26  * 按姓名+ 数字或数量组合
27  */
28 @Test
29 void test3(){
30     //3 apple, 2 banana, others 1
31     List<Item> items = Arrays.asList(
32             new Item("apple", 10, new BigDecimal("9.99")),
33             new Item("banana", 20, new BigDecimal("19.99")),
34             new Item("orange", 10, new BigDecimal("29.99")),
35             new Item("watermelon", 10, new BigDecimal("29.99")),
36             new Item("papaya", 20, new BigDecimal("9.99")),
37             new Item("apple", 10, new BigDecimal("9.99")),
38             new Item("banana", 10, new BigDecimal("19.99")),
39             new Item("apple", 20, new BigDecimal("9.99"))
40     );
41     Map<String, Long> counting = items.stream().collect(Collectors.groupingBy(Item::getName, Collectors.counting()));
42     System.out.println(counting); //{papaya=1, orange=1, banana=2, apple=3, watermelon=1}
43 
44     Map<String, Integer> map = items.stream().collect(Collectors.groupingBy(Item::getName, Collectors.summingInt(Item::getNumber)));
45     System.out.println(map); //{papaya=20, orange=10, banana=30, apple=40, watermelon=10}
46 }
47 
48 /**
49  * 按价格分组
50  */
51 @Test
52 void test4(){
53     //3 apple, 2 banana, others 1
54     List<Item> items = Arrays.asList(
55             new Item("apple", 10, new BigDecimal("9.99")),
56             new Item("banana", 20, new BigDecimal("19.99")),
57             new Item("orange", 10, new BigDecimal("29.99")),
58             new Item("watermelon", 10, new BigDecimal("29.99")),
59             new Item("papaya", 20, new BigDecimal("9.99")),
60             new Item("apple", 10, new BigDecimal("9.99")),
61             new Item("banana", 10, new BigDecimal("19.99")),
62             new Item("apple", 20, new BigDecimal("9.99"))
63     );
64     Map<BigDecimal, List<Item>> decimalListMap = items.stream().collect(Collectors.groupingBy(Item::getPrice));
65     System.out.println(decimalListMap);
66     //{19.99=[Item(name=banana, number=20, price=19.99),
67     //        Item(name=banana, number=10, price=19.99)],
68     // 29.99=[Item(name=orange, number=10, price=29.99),
69     //        Item(name=watermelon, number=10, price=29.99)],
70     // 9.99=[Item(name=apple, number=10, price=9.99),
71     //       Item(name=papaya, number=20, price=9.99),
72     //       Item(name=apple, number=10, price=9.99),
73     //       Item(name=apple, number=20, price=9.99)]}
74 
75     Map<BigDecimal, Set<String>> setMap = items.stream().collect(Collectors.groupingBy(Item::getPrice, Collectors.mapping(Item::getName, Collectors.toSet())));
76     System.out.println(setMap);
77     //{19.99=[banana],
78     // 29.99=[orange, watermelon],
79     // 9.99=[papaya, apple]}
80 }

 

posted @ 2021-11-29 19:54  donleo123  阅读(10991)  评论(0编辑  收藏  举报