粒子群基本算法

 

#include <iostream>
#include <math.h>
#include <time.h>
using namespace std;

#define M 50  //群体数目50
#define N 4   //每个粒子的维数4
#define NN 100 //迭代次数
//测试类
class TestFunction
{
    public:
        double resen(double x1,double x2,double x3,double x4)
        {
            double s=0;
            s=100*(x2-x1*x1)*(x2-x1*x1)+(1-x1)*(1-x1)+s;
            s=100*(x3-x2*x2)*(x3-x2*x2)+(1-x2)*(1-x2)+s;
            s=100*(x4-x3*x3)*(x4-x3*x3)+(1-x3)*(1-x3)+s;
            return s;
        }
};

class CQPSO
{
    private:
        double (*w)[N];// = new double[50][4]; //总体粒子
        double *f;//=new double[M];//适应度值
        double *ff;//=new double[M];//相对f的比较值
        double (*p)[N];//=new double[M][N];
        double (*v)[N];//粒子更新速度
        double *g;//=new double[N];
        double c1;
        double c2;
        TestFunction *tf;// = new TestFunction;
        double random()
        {
            double s;
            s=(abs(rand())%10000+10000)/10000.0-1.0;    
            return s;
        }
    public:
        CQPSO( )
        {
            int i,j;
            w=new double[M][N];
            v=new double[M][N];
            f=new double[M];
            ff=new double[M];
            p=new double[M][N];
            g=new double[N];
            tf=new TestFunction;
            for(i=0;i<M;i++)
            {
                for(j=0;j<N;j++)
                {
                    w[i][j]=random();
                    v[i][j]=random();
                }
            }
            c1=2;
            c2=2;
        }

        void CQPSOmethod(int count)
        {
            int i,j;
            if(count==1)
            {
                for(i=0;i<M;i++)
                {
                    for(j=0;j<N;j++)
                    {
                        p[i][j]=w[i][j];
                    }
                    f[i]=tf->resen(w[i][0],w[i][1],w[i][2],w[i][3]);
                }
                cqpso_p();//得出全局最优
            }

            if(count>1)
            {
                cqpso_update(count);
                for(i=0;i<M;i++)
                {
                    ff[i]=tf->resen(w[i][0],w[i][1],w[i][2],w[i][3]);
                    if(ff[i]<f[i])
                    {    
                        f[i]=ff[i];
                        for(j=0;j<N;j++) p[i][j]=w[i][j];
                    }
                }
                cqpso_p();
            }
            cout<<(tf->resen(g[0],g[1],g[2],g[3]))<<endl;
        }

        double ww(int count)
        {
            double wmax=0.9;
            double wmin=0.1;
            double wx=0.9-count*(0.8/NN);
            return wx;
        }

        void cqpso_p()//得到个体最优中最小值——全局最优
        {
            double temp=f[0];
            int i,j;
            for(i=1;i<M;i++)
            {
                if(f[i]<temp)
                {
                    temp=f[i];
                }
            }
            for(i=0;i<M;i++)
            {
                if(temp==f[i])
                {
                    for(j=0;j<N;j++)
                    {
                        g[j]=p[i][j];
                    }
                    break;
                }
            }
        }    
        void cqpso_update(int count )
        {
            int i,j;
            for(i=0;i<M;i++)
            {
                for(j=0;j<N;j++)
                    v[i][j]=ww(count)*v[i][j]+c1*random()*(p[i][j]-w[i][j])+c2*random()*(g[j]-w[i][j]);
            }
            for(i=0;i<M;i++)
            {
                for(j=0;j<N;j++)
                    w[i][j]=w[i][j]+v[i][j];
            }
        }
    
};

int main()
{
    int i;
    srand((unsigned)time(0)); 
    CQPSO *qo = new CQPSO();
    for(i=1;i<NN;i++)
    qo->CQPSOmethod(i);
}

 

posted @ 2016-01-21 20:11  小德cyj  阅读(387)  评论(0编辑  收藏  举报