Netty-nio

https://www.bilibili.com/video/BV1py4y1E7oA

1|0一. NIO 基础

non-blocking io 非阻塞 IO

1|11. 三大组件

1|01.1 Channel & Buffer

channel 有一点类似于 stream,它就是读写数据的双向通道,可以从 channel 将数据读入 buffer,也可以将 buffer 的数据写入 channel,而之前的 stream 要么是输入,要么是输出,channel 比 stream 更为底层

channel
buffer

常见的 Channel 有

  • FileChannel
  • DatagramChannel
  • SocketChannel
  • ServerSocketChannel

buffer 则用来缓冲读写数据,常见的 buffer 有

  • ByteBuffer
    • MappedByteBuffer
    • DirectByteBuffer
    • HeapByteBuffer
  • ShortBuffer
  • IntBuffer
  • LongBuffer
  • FloatBuffer
  • DoubleBuffer
  • CharBuffer

1|01.2 Selector

selector 单从字面意思不好理解,需要结合服务器的设计演化来理解它的用途

1|0多线程版设计

多线程版
socket1
thread
thread
socket2
thread
socket3

1|0⚠️ 多线程版缺点

  • 内存占用高
  • 线程上下文切换成本高
  • 只适合连接数少的场景

1|0线程池版设计

线程池版
socket1
thread
thread
socket2
socket3
socket4

1|0⚠️ 线程池版缺点

  • 阻塞模式下,线程仅能处理一个 socket 连接
  • 仅适合短连接场景

1|0selector 版设计

selector 的作用就是配合一个线程来管理多个 channel,获取这些 channel 上发生的事件,这些 channel 工作在非阻塞模式下,不会让线程吊死在一个 channel 上。适合连接数特别多,但流量低的场景(low traffic)

selector 版
selector
thread
channel
channel
channel

调用 selector 的 select() 会阻塞直到 channel 发生了读写就绪事件,这些事件发生,select 方法就会返回这些事件交给 thread 来处理

1|22. ByteBuffer

有一普通文本文件 data.txt,内容为

1234567890abcd

使用 FileChannel 来读取文件内容

@Slf4j public class ChannelDemo1 { public static void main(String[] args) { try (RandomAccessFile file = new RandomAccessFile("helloword/data.txt", "rw")) { FileChannel channel = file.getChannel(); ByteBuffer buffer = ByteBuffer.allocate(10); do { // 向 buffer 写入 int len = channel.read(buffer); log.debug("读到字节数:{}", len); if (len == -1) { break; } // 切换 buffer 读模式 buffer.flip(); while(buffer.hasRemaining()) { log.debug("{}", (char)buffer.get()); } // 切换 buffer 写模式 buffer.clear(); } while (true); } catch (IOException e) { e.printStackTrace(); } } }

输出

10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 读到字节数:10 10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 1 10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 2 10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 3 10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 4 10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 5 10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 6 10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 7 10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 8 10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 9 10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 0 10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 读到字节数:4 10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - a 10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - b 10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - c 10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - d 10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 读到字节数:-1

1|02.1 ByteBuffer 正确使用姿势

  1. 向 buffer 写入数据,例如调用 channel.read(buffer)
  2. 调用 flip() 切换至读模式
  3. 从 buffer 读取数据,例如调用 buffer.get()
  4. 调用 clear() 或 compact() 切换至写模式
  5. 重复 1~4 步骤
package cn.itcast.nio.c2; import lombok.extern.slf4j.Slf4j; import java.io.FileInputStream; import java.io.IOException; import java.nio.ByteBuffer; import java.nio.channels.FileChannel; @Slf4j public class TestByteBuffer { public static void main(String[] args) { // FileChannel // 1. 输入输出流, 2. RandomAccessFile try (FileChannel channel = new FileInputStream("data.txt").getChannel()) { // 准备缓冲区 ByteBuffer buffer = ByteBuffer.allocate(10); while(true) { // 从 channel 读取数据,向 buffer 写入 int len = channel.read(buffer); log.debug("读取到的字节数 {}", len); if(len == -1) { // 没有内容了 break; } // 打印 buffer 的内容 buffer.flip(); // 切换至读模式 while(buffer.hasRemaining()) { // 是否还有剩余未读数据 byte b = buffer.get(); log.debug("实际字节 {}", (char) b); } buffer.clear(); // 切换为写模式 } } catch (IOException e) { e.printStackTrace(); } } }

1|02.2 ByteBuffer 结构

ByteBuffer 有以下重要属性

  • capacity
  • position
  • limit

一开始

写模式下,position 是写入位置,limit 等于容量,下图表示写入了 4 个字节后的状态

flip 动作发生后,position 切换为读取位置,limit 切换为读取限制

读取 4 个字节后,状态

clear 动作发生后,状态

compact 方法,是把未读完的部分向前压缩,然后切换至写模式

1|0💡 调试工具类

public class ByteBufferUtil { private static final char[] BYTE2CHAR = new char[256]; private static final char[] HEXDUMP_TABLE = new char[256 * 4]; private static final String[] HEXPADDING = new String[16]; private static final String[] HEXDUMP_ROWPREFIXES = new String[65536 >>> 4]; private static final String[] BYTE2HEX = new String[256]; private static final String[] BYTEPADDING = new String[16]; static { final char[] DIGITS = "0123456789abcdef".toCharArray(); for (int i = 0; i < 256; i++) { HEXDUMP_TABLE[i << 1] = DIGITS[i >>> 4 & 0x0F]; HEXDUMP_TABLE[(i << 1) + 1] = DIGITS[i & 0x0F]; } int i; // Generate the lookup table for hex dump paddings for (i = 0; i < HEXPADDING.length; i++) { int padding = HEXPADDING.length - i; StringBuilder buf = new StringBuilder(padding * 3); for (int j = 0; j < padding; j++) { buf.append(" "); } HEXPADDING[i] = buf.toString(); } // Generate the lookup table for the start-offset header in each row (up to 64KiB). for (i = 0; i < HEXDUMP_ROWPREFIXES.length; i++) { StringBuilder buf = new StringBuilder(12); buf.append(NEWLINE); buf.append(Long.toHexString(i << 4 & 0xFFFFFFFFL | 0x100000000L)); buf.setCharAt(buf.length() - 9, '|'); buf.append('|'); HEXDUMP_ROWPREFIXES[i] = buf.toString(); } // Generate the lookup table for byte-to-hex-dump conversion for (i = 0; i < BYTE2HEX.length; i++) { BYTE2HEX[i] = ' ' + StringUtil.byteToHexStringPadded(i); } // Generate the lookup table for byte dump paddings for (i = 0; i < BYTEPADDING.length; i++) { int padding = BYTEPADDING.length - i; StringBuilder buf = new StringBuilder(padding); for (int j = 0; j < padding; j++) { buf.append(' '); } BYTEPADDING[i] = buf.toString(); } // Generate the lookup table for byte-to-char conversion for (i = 0; i < BYTE2CHAR.length; i++) { if (i <= 0x1f || i >= 0x7f) { BYTE2CHAR[i] = '.'; } else { BYTE2CHAR[i] = (char) i; } } } /** * 打印所有内容 * @param buffer */ public static void debugAll(ByteBuffer buffer) { int oldlimit = buffer.limit(); buffer.limit(buffer.capacity()); StringBuilder origin = new StringBuilder(256); appendPrettyHexDump(origin, buffer, 0, buffer.capacity()); System.out.println("+--------+-------------------- all ------------------------+----------------+"); System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), oldlimit); System.out.println(origin); buffer.limit(oldlimit); } /** * 打印可读取内容 * @param buffer */ public static void debugRead(ByteBuffer buffer) { StringBuilder builder = new StringBuilder(256); appendPrettyHexDump(builder, buffer, buffer.position(), buffer.limit() - buffer.position()); System.out.println("+--------+-------------------- read -----------------------+----------------+"); System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), buffer.limit()); System.out.println(builder); } private static void appendPrettyHexDump(StringBuilder dump, ByteBuffer buf, int offset, int length) { if (isOutOfBounds(offset, length, buf.capacity())) { throw new IndexOutOfBoundsException( "expected: " + "0 <= offset(" + offset + ") <= offset + length(" + length + ") <= " + "buf.capacity(" + buf.capacity() + ')'); } if (length == 0) { return; } dump.append( " +-------------------------------------------------+" + NEWLINE + " | 0 1 2 3 4 5 6 7 8 9 a b c d e f |" + NEWLINE + "+--------+-------------------------------------------------+----------------+"); final int startIndex = offset; final int fullRows = length >>> 4; final int remainder = length & 0xF; // Dump the rows which have 16 bytes. for (int row = 0; row < fullRows; row++) { int rowStartIndex = (row << 4) + startIndex; // Per-row prefix. appendHexDumpRowPrefix(dump, row, rowStartIndex); // Hex dump int rowEndIndex = rowStartIndex + 16; for (int j = rowStartIndex; j < rowEndIndex; j++) { dump.append(BYTE2HEX[getUnsignedByte(buf, j)]); } dump.append(" |"); // ASCII dump for (int j = rowStartIndex; j < rowEndIndex; j++) { dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]); } dump.append('|'); } // Dump the last row which has less than 16 bytes. if (remainder != 0) { int rowStartIndex = (fullRows << 4) + startIndex; appendHexDumpRowPrefix(dump, fullRows, rowStartIndex); // Hex dump int rowEndIndex = rowStartIndex + remainder; for (int j = rowStartIndex; j < rowEndIndex; j++) { dump.append(BYTE2HEX[getUnsignedByte(buf, j)]); } dump.append(HEXPADDING[remainder]); dump.append(" |"); // Ascii dump for (int j = rowStartIndex; j < rowEndIndex; j++) { dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]); } dump.append(BYTEPADDING[remainder]); dump.append('|'); } dump.append(NEWLINE + "+--------+-------------------------------------------------+----------------+"); } private static void appendHexDumpRowPrefix(StringBuilder dump, int row, int rowStartIndex) { if (row < HEXDUMP_ROWPREFIXES.length) { dump.append(HEXDUMP_ROWPREFIXES[row]); } else { dump.append(NEWLINE); dump.append(Long.toHexString(rowStartIndex & 0xFFFFFFFFL | 0x100000000L)); dump.setCharAt(dump.length() - 9, '|'); dump.append('|'); } } public static short getUnsignedByte(ByteBuffer buffer, int index) { return (short) (buffer.get(index) & 0xFF); } }

演示

package cn.itcast.nio.c2; import java.nio.ByteBuffer; import static cn.itcast.nio.c2.ByteBufferUtil.debugAll; public class TestByteBufferReadWrite { public static void main(String[] args) { ByteBuffer buffer = ByteBuffer.allocate(10); buffer.put((byte) 0x61); // 'a' debugAll(buffer); buffer.put(new byte[]{0x62, 0x63, 0x64}); // b c d debugAll(buffer); // System.out.println(buffer.get()); buffer.flip(); System.out.println(buffer.get()); debugAll(buffer); buffer.compact(); debugAll(buffer); buffer.put(new byte[]{0x65, 0x6f}); debugAll(buffer); } }

1|02.3 ByteBuffer 常见方法

1|0分配空间

可以使用 allocate 方法为 ByteBuffer 分配空间,其它 buffer 类也有该方法

Bytebuffer buf = ByteBuffer.allocate(16);
import java.nio.ByteBuffer; public class TestByteBufferAllocate { public static void main(String[] args) { System.out.println(ByteBuffer.allocate(16).getClass()); System.out.println(ByteBuffer.allocateDirect(16).getClass()); /* class java.nio.HeapByteBuffer - java 堆内存,读写效率较低,受到 GC 的影响 class java.nio.DirectByteBuffer - 直接内存,读写效率高(少一次拷贝),不会受 GC 影响,分配的效率低 */ } }

1|0向 buffer 写入数据

有两种办法

  • 调用 channel 的 read 方法
  • 调用 buffer 自己的 put 方法
int readBytes = channel.read(buf);

buf.put((byte)127);

1|0从 buffer 读取数据

同样有两种办法

  • 调用 channel 的 write 方法
  • 调用 buffer 自己的 get 方法
int writeBytes = channel.write(buf);

byte b = buf.get();

get 方法会让 position 读指针向后走,如果想重复读取数据

  • 可以调用 rewind 方法将 position 重新置为 0
  • 或者调用 get(int i) 方法获取索引 i 的内容,它不会移动读指针

1|0mark 和 reset

mark 是在读取时,做一个标记,即使 position 改变,只要调用 reset 就能回到 mark 的位置

注意

rewind 和 flip 都会清除 mark 位置

package cn.itcast.nio.c2; import java.nio.ByteBuffer; import static cn.itcast.nio.c2.ByteBufferUtil.debugAll; public class TestByteBufferRead { public static void main(String[] args) { ByteBuffer buffer = ByteBuffer.allocate(10); buffer.put(new byte[]{'a', 'b', 'c', 'd'}); buffer.flip(); // rewind 从头开始读 /*buffer.get(new byte[4]); debugAll(buffer); buffer.rewind(); System.out.println((char)buffer.get());*/ // mark & reset // mark 做一个标记,记录 position 位置, reset 是将 position 重置到 mark 的位置 /*System.out.println((char) buffer.get()); System.out.println((char) buffer.get()); buffer.mark(); // 加标记,索引2 的位置 System.out.println((char) buffer.get()); System.out.println((char) buffer.get()); buffer.reset(); // 将 position 重置到索引 2 System.out.println((char) buffer.get()); System.out.println((char) buffer.get());*/ // get(i) 不会改变读索引的位置 System.out.println((char) buffer.get(3)); debugAll(buffer); } }

1|0字符串与 ByteBuffer 互转

package cn.itcast.nio.c2; import java.nio.ByteBuffer; import java.nio.charset.StandardCharsets; import static cn.itcast.nio.c2.ByteBufferUtil.debugAll; public class TestByteBufferString { public static void main(String[] args) { // 1. 字符串转为 ByteBuffer ByteBuffer buffer1 = ByteBuffer.allocate(16); buffer1.put("hello".getBytes()); debugAll(buffer1); // 2. Charset ByteBuffer buffer2 = StandardCharsets.UTF_8.encode("hello"); debugAll(buffer2); // 3. wrap ByteBuffer buffer3 = ByteBuffer.wrap("hello".getBytes()); debugAll(buffer3); // 4. 转为字符串 String str1 = StandardCharsets.UTF_8.decode(buffer2).toString(); System.out.println(str1); buffer1.flip(); String str2 = StandardCharsets.UTF_8.decode(buffer1).toString(); System.out.println(str2); } }

结果

+--------+-------------------- all ------------------------+----------------+ position: [5], limit: [16] +-------------------------------------------------+ | 0 1 2 3 4 5 6 7 8 9 a b c d e f | +--------+-------------------------------------------------+----------------+ |00000000| 68 65 6c 6c 6f 00 00 00 00 00 00 00 00 00 00 00 |hello...........| +--------+-------------------------------------------------+----------------+ +--------+-------------------- all ------------------------+----------------+ position: [0], limit: [5] +-------------------------------------------------+ | 0 1 2 3 4 5 6 7 8 9 a b c d e f | +--------+-------------------------------------------------+----------------+ |00000000| 68 65 6c 6c 6f |hello | +--------+-------------------------------------------------+----------------+ +--------+-------------------- all ------------------------+----------------+ position: [0], limit: [5] +-------------------------------------------------+ | 0 1 2 3 4 5 6 7 8 9 a b c d e f | +--------+-------------------------------------------------+----------------+ |00000000| 68 65 6c 6c 6f |hello | +--------+-------------------------------------------------+----------------+ hello hello Process finished with exit code 0

1|0⚠️ Buffer 的线程安全

Buffer 是非线程安全的

1|02.4 Scattering Reads

分散读取,有一个文本文件 3parts.txt

onetwothree

使用如下方式读取,可以将数据填充至多个 buffer

import java.io.IOException; import java.io.RandomAccessFile; import java.nio.ByteBuffer; import java.nio.channels.FileChannel; import static cn.itcast.nio.c2.ByteBufferUtil.debugAll; public class TestScatteringReads { public static void main(String[] args) { try (FileChannel channel = new RandomAccessFile("words.txt", "r").getChannel()) { ByteBuffer b1 = ByteBuffer.allocate(3); ByteBuffer b2 = ByteBuffer.allocate(3); ByteBuffer b3 = ByteBuffer.allocate(5); channel.read(new ByteBuffer[]{b1, b2, b3}); b1.flip(); b2.flip(); b3.flip(); debugAll(b1); debugAll(b2); debugAll(b3); } catch (IOException e) { } } }

结果

+--------+-------------------- all ------------------------+----------------+ position: [0], limit: [3] +-------------------------------------------------+ | 0 1 2 3 4 5 6 7 8 9 a b c d e f | +--------+-------------------------------------------------+----------------+ |00000000| 6f 6e 65 |one | +--------+-------------------------------------------------+----------------+ +--------+-------------------- all ------------------------+----------------+ position: [0], limit: [3] +-------------------------------------------------+ | 0 1 2 3 4 5 6 7 8 9 a b c d e f | +--------+-------------------------------------------------+----------------+ |00000000| 74 77 6f |two | +--------+-------------------------------------------------+----------------+ +--------+-------------------- all ------------------------+----------------+ position: [0], limit: [5] +-------------------------------------------------+ | 0 1 2 3 4 5 6 7 8 9 a b c d e f | +--------+-------------------------------------------------+----------------+ |00000000| 74 68 72 65 65 |three | +--------+-------------------------------------------------+----------------+

1|02.5 Gathering Writes

使用如下方式写入,可以将多个 buffer 的数据填充至 channel

import java.io.IOException; import java.io.RandomAccessFile; import java.nio.ByteBuffer; import java.nio.channels.FileChannel; import java.nio.charset.StandardCharsets; public class TestGatheringWrites { public static void main(String[] args) { ByteBuffer b1 = StandardCharsets.UTF_8.encode("hello"); ByteBuffer b2 = StandardCharsets.UTF_8.encode("world"); ByteBuffer b3 = StandardCharsets.UTF_8.encode("你好"); try (FileChannel channel = new RandomAccessFile("words2.txt", "rw").getChannel()) { channel.write(new ByteBuffer[]{b1, b2, b3}); } catch (IOException e) { } } }

文件内容

helloworld你好

1|02.6 练习

网络上有多条数据发送给服务端,数据之间使用 \n 进行分隔
但由于某种原因这些数据在接收时,被进行了重新组合,例如原始数据有3条为

  • Hello,world\n
  • I'm zhangsan\n
  • How are you?\n

变成了下面的两个 byteBuffer (黏包,半包)

  • Hello,world\nI'm zhangsan\nHo
  • w are you?\n

现在要求你编写程序,将错乱的数据恢复成原始的按 \n 分隔的数据

package cn.itcast.nio.c2; import java.nio.ByteBuffer; import static cn.itcast.nio.c2.ByteBufferUtil.debugAll; public class TestByteBufferExam { public static void main(String[] args) { ByteBuffer source = ByteBuffer.allocate(32); source.put("Hello,world\nI'm zhangsan\nHo".getBytes()); split(source); source.put("w are you?\n".getBytes()); split(source); } private static void split(ByteBuffer source) { source.flip(); for (int i = 0; i < source.limit(); i++) { // 找到一条完整消息 if (source.get(i) == '\n') { int length = i + 1 - source.position(); // 把这条完整消息存入新的 ByteBuffer ByteBuffer target = ByteBuffer.allocate(length); // 从 source 读,向 target 写 for (int j = 0; j < length; j++) { target.put(source.get()); } debugAll(target); } } source.compact(); } }

1|33. 文件编程

1|03.1 FileChannel

1|0⚠️ FileChannel 工作模式

FileChannel 只能工作在阻塞模式下

1|0获取

不能直接打开 FileChannel,必须通过 FileInputStream、FileOutputStream 或者 RandomAccessFile 来获取 FileChannel,它们都有 getChannel 方法

  • 通过 FileInputStream 获取的 channel 只能读
  • 通过 FileOutputStream 获取的 channel 只能写
  • 通过 RandomAccessFile 是否能读写根据构造 RandomAccessFile 时的读写模式决定

1|0读取

会从 channel 读取数据填充 ByteBuffer,返回值表示读到了多少字节,-1 表示到达了文件的末尾

int readBytes = channel.read(buffer);

1|0写入

写入的正确姿势如下, SocketChannel

ByteBuffer buffer = ...; buffer.put(...); // 存入数据 buffer.flip(); // 切换读模式 while(buffer.hasRemaining()) { channel.write(buffer); }

在 while 中调用 channel.write 是因为 write 方法并不能保证一次将 buffer 中的内容全部写入 channel

1|0关闭

channel 必须关闭,不过调用了 FileInputStream、FileOutputStream 或者 RandomAccessFile 的 close 方法会间接地调用 channel 的 close 方法

1|0位置

获取当前位置

long pos = channel.position();

设置当前位置

long newPos = ...; channel.position(newPos);

设置当前位置时,如果设置为文件的末尾

  • 这时读取会返回 -1
  • 这时写入,会追加内容,但要注意如果 position 超过了文件末尾,再写入时在新内容和原末尾之间会有空洞(00)

1|0大小

使用 size 方法获取文件的大小

1|0强制写入

操作系统出于性能的考虑,会将数据缓存,不是立刻写入磁盘。可以调用 force(true) 方法将文件内容和元数据(文件的权限等信息)立刻写入磁盘

1|03.2 两个 Channel 传输数据

String FROM = "helloword/data.txt"; String TO = "helloword/to.txt"; long start = System.nanoTime(); try (FileChannel from = new FileInputStream(FROM).getChannel(); FileChannel to = new FileOutputStream(TO).getChannel(); ) { from.transferTo(0, from.size(), to); } catch (IOException e) { e.printStackTrace(); } long end = System.nanoTime(); System.out.println("transferTo 用时:" + (end - start) / 1000_000.0);

输出

transferTo 用时:8.2011

超过 2g 大小的文件传输

public class TestFileChannelTransferTo { public static void main(String[] args) { try ( FileChannel from = new FileInputStream("data.txt").getChannel(); FileChannel to = new FileOutputStream("to.txt").getChannel(); ) { // 效率高,底层会利用操作系统的零拷贝进行优化 long size = from.size(); // left 变量代表还剩余多少字节 for (long left = size; left > 0; ) { System.out.println("position:" + (size - left) + " left:" + left); left -= from.transferTo((size - left), left, to); } } catch (IOException e) { e.printStackTrace(); } } }

实际传输一个超大文件

position:0 left:7769948160 position:2147483647 left:5622464513 position:4294967294 left:3474980866 position:6442450941 left:1327497219

1|03.3 Path

jdk7 引入了 Path 和 Paths 类

  • Path 用来表示文件路径
  • Paths 是工具类,用来获取 Path 实例
Path source = Paths.get("1.txt"); // 相对路径 使用 user.dir 环境变量来定位 1.txt Path source = Paths.get("d:\\1.txt"); // 绝对路径 代表了 d:\1.txt Path source = Paths.get("d:/1.txt"); // 绝对路径 同样代表了 d:\1.txt Path projects = Paths.get("d:\\data", "projects"); // 代表了 d:\data\projects
  • . 代表了当前路径
  • .. 代表了上一级路径

例如目录结构如下

d: |- data |- projects |- a |- b

代码

Path path = Paths.get("d:\\data\\projects\\a\\..\\b"); System.out.println(path); System.out.println(path.normalize()); // 正常化路径

会输出

d:\data\projects\a\..\b d:\data\projects\b

1|03.4 Files

检查文件是否存在

Path path = Paths.get("helloword/data.txt"); System.out.println(Files.exists(path));

创建一级目录

Path path = Paths.get("helloword/d1"); Files.createDirectory(path);
  • 如果目录已存在,会抛异常 FileAlreadyExistsException
  • 不能一次创建多级目录,否则会抛异常 NoSuchFileException

创建多级目录用

Path path = Paths.get("helloword/d1/d2"); Files.createDirectories(path);

拷贝文件

Path source = Paths.get("helloword/data.txt"); Path target = Paths.get("helloword/target.txt"); Files.copy(source, target);
  • 如果文件已存在,会抛异常 FileAlreadyExistsException

如果希望用 source 覆盖掉 target,需要用 StandardCopyOption 来控制

Files.copy(source, target, StandardCopyOption.REPLACE_EXISTING);

移动文件

Path source = Paths.get("helloword/data.txt"); Path target = Paths.get("helloword/data.txt"); Files.move(source, target, StandardCopyOption.ATOMIC_MOVE);
  • StandardCopyOption.ATOMIC_MOVE 保证文件移动的原子性

删除文件

Path target = Paths.get("helloword/target.txt"); Files.delete(target);
  • 如果文件不存在,会抛异常 NoSuchFileException

删除目录

Path target = Paths.get("helloword/d1"); Files.delete(target);
  • 如果目录还有内容,会抛异常 DirectoryNotEmptyException

遍历目录文件

public static void main(String[] args) throws IOException { Path path = Paths.get("C:\\Program Files\\Java\\jdk1.8.0_91"); AtomicInteger dirCount = new AtomicInteger(); AtomicInteger fileCount = new AtomicInteger(); Files.walkFileTree(path, new SimpleFileVisitor<Path>(){ @Override public FileVisitResult preVisitDirectory(Path dir, BasicFileAttributes attrs) throws IOException { System.out.println(dir); dirCount.incrementAndGet(); return super.preVisitDirectory(dir, attrs); } @Override public FileVisitResult visitFile(Path file, BasicFileAttributes attrs) throws IOException { System.out.println(file); fileCount.incrementAndGet(); return super.visitFile(file, attrs); } }); System.out.println(dirCount); // 133 System.out.println(fileCount); // 1479 }

统计 jar 的数目

Path path = Paths.get("C:\\Program Files\\Java\\jdk1.8.0_91"); AtomicInteger fileCount = new AtomicInteger(); Files.walkFileTree(path, new SimpleFileVisitor<Path>(){ @Override public FileVisitResult visitFile(Path file, BasicFileAttributes attrs) throws IOException { if (file.toFile().getName().endsWith(".jar")) { fileCount.incrementAndGet(); } return super.visitFile(file, attrs); } }); System.out.println(fileCount); // 724

删除多级目录

Path path = Paths.get("d:\\a"); Files.walkFileTree(path, new SimpleFileVisitor<Path>(){ @Override public FileVisitResult visitFile(Path file, BasicFileAttributes attrs) throws IOException { Files.delete(file); return super.visitFile(file, attrs); } @Override public FileVisitResult postVisitDirectory(Path dir, IOException exc) throws IOException { Files.delete(dir); return super.postVisitDirectory(dir, exc); } });

1|0⚠️ 删除很危险

删除是危险操作,确保要递归删除的文件夹没有重要内容

拷贝多级目录

long start = System.currentTimeMillis(); String source = "D:\\Snipaste-1.16.2-x64"; String target = "D:\\Snipaste-1.16.2-x64aaa"; Files.walk(Paths.get(source)).forEach(path -> { try { String targetName = path.toString().replace(source, target); // 是目录 if (Files.isDirectory(path)) { Files.createDirectory(Paths.get(targetName)); } // 是普通文件 else if (Files.isRegularFile(path)) { Files.copy(path, Paths.get(targetName)); } } catch (IOException e) { e.printStackTrace(); } }); long end = System.currentTimeMillis(); System.out.println(end - start);

1|44. 网络编程

1|04.1 非阻塞 vs 阻塞

1|0阻塞

  • 阻塞模式下,相关方法都会导致线程暂停
    • ServerSocketChannel.accept 会在没有连接建立时让线程暂停
    • SocketChannel.read 会在没有数据可读时让线程暂停
    • 阻塞的表现其实就是线程暂停了,暂停期间不会占用 cpu,但线程相当于闲置
  • 单线程下,阻塞方法之间相互影响,几乎不能正常工作,需要多线程支持
  • 但多线程下,有新的问题,体现在以下方面
    • 32 位 jvm 一个线程 320k,64 位 jvm 一个线程 1024k,如果连接数过多,必然导致 OOM,并且线程太多,反而会因为频繁上下文切换导致性能降低
    • 可以采用线程池技术来减少线程数和线程上下文切换,但治标不治本,如果有很多连接建立,但长时间 inactive,会阻塞线程池中所有线程,因此不适合长连接,只适合短连接

服务器端

// 使用 nio 来理解阻塞模式, 单线程 // 0. ByteBuffer ByteBuffer buffer = ByteBuffer.allocate(16); // 1. 创建了服务器 ServerSocketChannel ssc = ServerSocketChannel.open(); // 2. 绑定监听端口 ssc.bind(new InetSocketAddress(8080)); // 3. 连接集合 List<SocketChannel> channels = new ArrayList<>(); while (true) { // 4. accept 建立与客户端连接, SocketChannel 用来与客户端之间通信 log.debug("connecting..."); SocketChannel sc = ssc.accept(); // 阻塞方法,线程停止运行 log.debug("connected... {}", sc); channels.add(sc); for (SocketChannel channel : channels) { // 5. 接收客户端发送的数据 log.debug("before read... {}", channel); channel.read(buffer); // 阻塞方法,线程停止运行 buffer.flip(); debugRead(buffer); buffer.clear(); log.debug("after read...{}", channel); } }

客户端

SocketChannel sc = SocketChannel.open(); sc.connect(new InetSocketAddress("localhost", 8080)); System.out.println("waiting...");

1|0非阻塞

  • 非阻塞模式下,相关方法都会不会让线程暂停
    • 在 ServerSocketChannel.accept 在没有连接建立时,会返回 null,继续运行
    • SocketChannel.read 在没有数据可读时,会返回 0,但线程不必阻塞,可以去执行其它 SocketChannel 的 read 或是去执行 ServerSocketChannel.accept
    • 写数据时,线程只是等待数据写入 Channel 即可,无需等 Channel 通过网络把数据发送出去
  • 但非阻塞模式下,即使没有连接建立,和可读数据,线程仍然在不断运行,白白浪费了 cpu
  • 数据复制过程中,线程实际还是阻塞的(AIO 改进的地方)

服务器端,客户端代码不变

// 使用 nio 来理解非阻塞模式, 单线程 // 0. ByteBuffer ByteBuffer buffer = ByteBuffer.allocate(16); // 1. 创建了服务器 ServerSocketChannel ssc = ServerSocketChannel.open(); ssc.configureBlocking(false); // 非阻塞模式 // 2. 绑定监听端口 ssc.bind(new InetSocketAddress(8080)); // 3. 连接集合 List<SocketChannel> channels = new ArrayList<>(); while (true) { // 4. accept 建立与客户端连接, SocketChannel 用来与客户端之间通信 SocketChannel sc = ssc.accept(); // 非阻塞,线程还会继续运行,如果没有连接建立,但sc是null if (sc != null) { log.debug("connected... {}", sc); sc.configureBlocking(false); // 非阻塞模式 channels.add(sc); } for (SocketChannel channel : channels) { // 5. 接收客户端发送的数据 int read = channel.read(buffer);// 非阻塞,线程仍然会继续运行,如果没有读到数据,read 返回 0 if (read > 0) { buffer.flip(); debugRead(buffer); buffer.clear(); log.debug("after read...{}", channel); } } }

1|0多路复用

单线程可以配合 Selector 完成对多个 Channel 可读写事件的监控,这称之为多路复用

  • 多路复用仅针对网络 IO、普通文件 IO 没法利用多路复用
  • 如果不用 Selector 的非阻塞模式,线程大部分时间都在做无用功,而 Selector 能够保证
    • 有可连接事件时才去连接
    • 有可读事件才去读取
    • 有可写事件才去写入
      • 限于网络传输能力,Channel 未必时时可写,一旦 Channel 可写,会触发 Selector 的可写事件

1|04.2 Selector

selector 版
selector
thread
channel
channel
channel

好处

  • 一个线程配合 selector 就可以监控多个 channel 的事件,事件发生线程才去处理。避免非阻塞模式下所做无用功
  • 让这个线程能够被充分利用
  • 节约了线程的数量
  • 减少了线程上下文切换

1|0创建

Selector selector = Selector.open();

1|0绑定 Channel 事件

也称之为注册事件,绑定的事件 selector 才会关心

channel.configureBlocking(false); SelectionKey key = channel.register(selector, 绑定事件);
  • channel 必须工作在非阻塞模式
  • FileChannel 没有非阻塞模式,因此不能配合 selector 一起使用
  • 绑定的事件类型可以有
    • connect - 客户端连接成功时触发
    • accept - 服务器端成功接受连接时触发
    • read - 数据可读入时触发,有因为接收能力弱,数据暂不能读入的情况
    • write - 数据可写出时触发,有因为发送能力弱,数据暂不能写出的情况

1|0监听 Channel 事件

可以通过下面三种方法来监听是否有事件发生,方法的返回值代表有多少 channel 发生了事件

方法1,阻塞直到绑定事件发生

int count = selector.select();

方法2,阻塞直到绑定事件发生,或是超时(时间单位为 ms)

int count = selector.select(long timeout);

方法3,不会阻塞,也就是不管有没有事件,立刻返回,自己根据返回值检查是否有事件

int count = selector.selectNow();

1|0💡 select 何时不阻塞

  • 事件发生时
    • 客户端发起连接请求,会触发 accept 事件
    • 客户端发送数据过来,客户端正常、异常关闭时,都会触发 read 事件,另外如果发送的数据大于 buffer 缓冲区,会触发多次读取事件
    • channel 可写,会触发 write 事件
    • 在 linux 下 nio bug 发生时
  • 调用 selector.wakeup()
  • 调用 selector.close()
  • selector 所在线程 interrupt

1|04.3 处理 accept 事件

客户端代码为

public class Client { public static void main(String[] args) { try (Socket socket = new Socket("localhost", 8080)) { System.out.println(socket); socket.getOutputStream().write("world".getBytes()); System.in.read(); } catch (IOException e) { e.printStackTrace(); } } }

服务器端代码为

@Slf4j public class ChannelDemo6 { public static void main(String[] args) { try (ServerSocketChannel channel = ServerSocketChannel.open()) { channel.bind(new InetSocketAddress(8080)); System.out.println(channel); Selector selector = Selector.open(); channel.configureBlocking(false); channel.register(selector, SelectionKey.OP_ACCEPT); while (true) { int count = selector.select(); // int count = selector.selectNow(); log.debug("select count: {}", count); // if(count <= 0) { // continue; // } // 获取所有事件 Set<SelectionKey> keys = selector.selectedKeys(); // 遍历所有事件,逐一处理 Iterator<SelectionKey> iter = keys.iterator(); while (iter.hasNext()) { SelectionKey key = iter.next(); // 判断事件类型 if (key.isAcceptable()) { ServerSocketChannel c = (ServerSocketChannel) key.channel(); // 必须处理 SocketChannel sc = c.accept(); log.debug("{}", sc); } // 处理完毕,必须将事件移除 iter.remove(); } } } catch (IOException e) { e.printStackTrace(); } } }

1|0💡 事件发生后能否不处理

事件发生后,要么处理,要么取消(cancel),不能什么都不做,否则下次该事件仍会触发,这是因为 nio 底层使用的是水平触发

1|04.4 处理 read 事件

@Slf4j public class ChannelDemo6 { public static void main(String[] args) { try (ServerSocketChannel channel = ServerSocketChannel.open()) { channel.bind(new InetSocketAddress(8080)); System.out.println(channel); Selector selector = Selector.open(); channel.configureBlocking(false); channel.register(selector, SelectionKey.OP_ACCEPT); while (true) { int count = selector.select(); // int count = selector.selectNow(); log.debug("select count: {}", count); // if(count <= 0) { // continue; // } // 获取所有事件 Set<SelectionKey> keys = selector.selectedKeys(); // 遍历所有事件,逐一处理 Iterator<SelectionKey> iter = keys.iterator(); while (iter.hasNext()) { SelectionKey key = iter.next(); // 判断事件类型 if (key.isAcceptable()) { ServerSocketChannel c = (ServerSocketChannel) key.channel(); // 必须处理 SocketChannel sc = c.accept(); sc.configureBlocking(false); sc.register(selector, SelectionKey.OP_READ); log.debug("连接已建立: {}", sc); } else if (key.isReadable()) { SocketChannel sc = (SocketChannel) key.channel(); ByteBuffer buffer = ByteBuffer.allocate(128); int read = sc.read(buffer); if(read == -1) { key.cancel(); sc.close(); } else { buffer.flip(); debug(buffer); } } // 处理完毕,必须将事件移除 iter.remove(); } } } catch (IOException e) { e.printStackTrace(); } } }

开启两个客户端,修改一下发送文字,输出

sun.nio.ch.ServerSocketChannelImpl[/0:0:0:0:0:0:0:0:8080] 21:16:39 [DEBUG] [main] c.i.n.ChannelDemo6 - select count: 1 21:16:39 [DEBUG] [main] c.i.n.ChannelDemo6 - 连接已建立: java.nio.channels.SocketChannel[connected local=/127.0.0.1:8080 remote=/127.0.0.1:60367] 21:16:39 [DEBUG] [main] c.i.n.ChannelDemo6 - select count: 1 +-------------------------------------------------+ | 0 1 2 3 4 5 6 7 8 9 a b c d e f | +--------+-------------------------------------------------+----------------+ |00000000| 68 65 6c 6c 6f |hello | +--------+-------------------------------------------------+----------------+ 21:16:59 [DEBUG] [main] c.i.n.ChannelDemo6 - select count: 1 21:16:59 [DEBUG] [main] c.i.n.ChannelDemo6 - 连接已建立: java.nio.channels.SocketChannel[connected local=/127.0.0.1:8080 remote=/127.0.0.1:60378] 21:16:59 [DEBUG] [main] c.i.n.ChannelDemo6 - select count: 1 +-------------------------------------------------+ | 0 1 2 3 4 5 6 7 8 9 a b c d e f | +--------+-------------------------------------------------+----------------+ |00000000| 77 6f 72 6c 64 |world | +--------+-------------------------------------------------+----------------+

1|0💡 为何要 iter.remove()

因为 select 在事件发生后,就会将相关的 key 放入 selectedKeys 集合,但不会在处理完后从 selectedKeys 集合中移除,需要我们自己编码删除。例如

  • 第一次触发了 ssckey 上的 accept 事件,没有移除 ssckey
  • 第二次触发了 sckey 上的 read 事件,但这时 selectedKeys 中还有上次的 ssckey ,在处理时因为没有真正的 serverSocket 连上了,就会导致空指针异常

1|0💡 cancel 的作用

cancel 会取消注册在 selector 上的 channel,并从 keys 集合中删除 key 后续不会再监听事件

1|0⚠️ 不处理边界的问题

以前有同学写过这样的代码,思考注释中两个问题,以 bio 为例,其实 nio 道理是一样的

public class Server { public static void main(String[] args) throws IOException { ServerSocket ss=new ServerSocket(9000); while (true) { Socket s = ss.accept(); InputStream in = s.getInputStream(); // 这里这么写,有没有问题 byte[] arr = new byte[4]; while(true) { int read = in.read(arr); // 这里这么写,有没有问题 if(read == -1) { break; } System.out.println(new String(arr, 0, read)); } } } }

客户端

public class Client { public static void main(String[] args) throws IOException { Socket max = new Socket("localhost", 9000); OutputStream out = max.getOutputStream(); out.write("hello".getBytes()); out.write("world".getBytes()); out.write("你好".getBytes()); max.close(); } }

输出

hell owor ld� �好

为什么?

1|0处理消息的边界

  • 一种思路是固定消息长度,数据包大小一样,服务器按预定长度读取,缺点是浪费带宽
  • 另一种思路是按分隔符拆分,缺点是效率低
  • TLV 格式,即 Type 类型、Length 长度、Value 数据,类型和长度已知的情况下,就可以方便获取消息大小,分配合适的 buffer,缺点是 buffer 需要提前分配,如果内容过大,则影响 server 吞吐量
    • Http 1.1 是 TLV 格式
    • Http 2.0 是 LTV 格式
ByteBuffer2ByteBuffer1服务器客户端1ByteBuffer2ByteBuffer1服务器客户端1发送 01234567890abcdef3333\r第一次 read 存入 01234567890abcdef扩容拷贝 01234567890abcdef第二次 read 存入 3333\r01234567890abcdef3333\r

服务器端

private static void split(ByteBuffer source) { source.flip(); for (int i = 0; i < source.limit(); i++) { // 找到一条完整消息 if (source.get(i) == '\n') { int length = i + 1 - source.position(); // 把这条完整消息存入新的 ByteBuffer ByteBuffer target = ByteBuffer.allocate(length); // 从 source 读,向 target 写 for (int j = 0; j < length; j++) { target.put(source.get()); } debugAll(target); } } source.compact(); // 0123456789abcdef position 16 limit 16 } public static void main(String[] args) throws IOException { // 1. 创建 selector, 管理多个 channel Selector selector = Selector.open(); ServerSocketChannel ssc = ServerSocketChannel.open(); ssc.configureBlocking(false); // 2. 建立 selector 和 channel 的联系(注册) // SelectionKey 就是将来事件发生后,通过它可以知道事件和哪个channel的事件 SelectionKey sscKey = ssc.register(selector, 0, null); // key 只关注 accept 事件 sscKey.interestOps(SelectionKey.OP_ACCEPT); log.debug("sscKey:{}", sscKey); ssc.bind(new InetSocketAddress(8080)); while (true) { // 3. select 方法, 没有事件发生,线程阻塞,有事件,线程才会恢复运行 // select 在事件未处理时,它不会阻塞, 事件发生后要么处理,要么取消,不能置之不理 selector.select(); // 4. 处理事件, selectedKeys 内部包含了所有发生的事件 Iterator<SelectionKey> iter = selector.selectedKeys().iterator(); // accept, read while (iter.hasNext()) { SelectionKey key = iter.next(); // 处理key 时,要从 selectedKeys 集合中删除,否则下次处理就会有问题 iter.remove(); log.debug("key: {}", key); // 5. 区分事件类型 if (key.isAcceptable()) { // 如果是 accept ServerSocketChannel channel = (ServerSocketChannel) key.channel(); SocketChannel sc = channel.accept(); sc.configureBlocking(false); ByteBuffer buffer = ByteBuffer.allocate(16); // attachment // 将一个 byteBuffer 作为附件关联到 selectionKey 上 SelectionKey scKey = sc.register(selector, 0, buffer); scKey.interestOps(SelectionKey.OP_READ); log.debug("{}", sc); log.debug("scKey:{}", scKey); } else if (key.isReadable()) { // 如果是 read try { SocketChannel channel = (SocketChannel) key.channel(); // 拿到触发事件的channel // 获取 selectionKey 上关联的附件 ByteBuffer buffer = (ByteBuffer) key.attachment(); int read = channel.read(buffer); // 如果是正常断开,read 的方法的返回值是 -1 if(read == -1) { key.cancel(); } else { split(buffer); // 需要扩容 if (buffer.position() == buffer.limit()) { ByteBuffer newBuffer = ByteBuffer.allocate(buffer.capacity() * 2); buffer.flip(); newBuffer.put(buffer); // 0123456789abcdef3333\n key.attach(newBuffer); } } } catch (IOException e) { e.printStackTrace(); key.cancel(); // 因为客户端断开了,因此需要将 key 取消(从 selector 的 keys 集合中真正删除 key) } } } } }

客户端

SocketChannel sc = SocketChannel.open(); sc.connect(new InetSocketAddress("localhost", 8080)); SocketAddress address = sc.getLocalAddress(); // sc.write(Charset.defaultCharset().encode("hello\nworld\n")); sc.write(Charset.defaultCharset().encode("0123\n456789abcdef")); sc.write(Charset.defaultCharset().encode("0123456789abcdef3333\n")); System.in.read();

1|0ByteBuffer 大小分配

  • 每个 channel 都需要记录可能被切分的消息,因为 ByteBuffer 不能被多个 channel 共同使用,因此需要为每个 channel 维护一个独立的 ByteBuffer
  • ByteBuffer 不能太大,比如一个 ByteBuffer 1Mb 的话,要支持百万连接就要 1Tb 内存,因此需要设计大小可变的 ByteBuffer
    • 一种思路是首先分配一个较小的 buffer,例如 4k,如果发现数据不够,再分配 8k 的 buffer,将 4k buffer 内容拷贝至 8k buffer,优点是消息连续容易处理,缺点是数据拷贝耗费性能,参考实现 http://tutorials.jenkov.com/java-performance/resizable-array.html
    • 另一种思路是用多个数组组成 buffer,一个数组不够,把多出来的内容写入新的数组,与前面的区别是消息存储不连续解析复杂,优点是避免了拷贝引起的性能损耗

1|04.5 处理 write 事件

1|0一次无法写完例子

  • 非阻塞模式下,无法保证把 buffer 中所有数据都写入 channel,因此需要追踪 write 方法的返回值(代表实际写入字节数)
  • 用 selector 监听所有 channel 的可写事件,每个 channel 都需要一个 key 来跟踪 buffer,但这样又会导致占用内存过多,就有两阶段策略
    • 当消息处理器第一次写入消息时,才将 channel 注册到 selector 上
    • selector 检查 channel 上的可写事件,如果所有的数据写完了,就取消 channel 的注册
    • 如果不取消,会每次可写均会触发 write 事件
public class WriteServer { public static void main(String[] args) throws IOException { ServerSocketChannel ssc = ServerSocketChannel.open(); ssc.configureBlocking(false); ssc.bind(new InetSocketAddress(8080)); Selector selector = Selector.open(); ssc.register(selector, SelectionKey.OP_ACCEPT); while(true) { selector.select(); Iterator<SelectionKey> iter = selector.selectedKeys().iterator(); while (iter.hasNext()) { SelectionKey key = iter.next(); iter.remove(); if (key.isAcceptable()) { SocketChannel sc = ssc.accept(); sc.configureBlocking(false); SelectionKey sckey = sc.register(selector, SelectionKey.OP_READ); // 1. 向客户端发送内容 StringBuilder sb = new StringBuilder(); for (int i = 0; i < 3000000; i++) { sb.append("a"); } ByteBuffer buffer = Charset.defaultCharset().encode(sb.toString()); int write = sc.write(buffer); // 3. write 表示实际写了多少字节 System.out.println("实际写入字节:" + write); // 4. 如果有剩余未读字节,才需要关注写事件 if (buffer.hasRemaining()) { // read 1 write 4 // 在原有关注事件的基础上,多关注 写事件 sckey.interestOps(sckey.interestOps() + SelectionKey.OP_WRITE); // 把 buffer 作为附件加入 sckey sckey.attach(buffer); } } else if (key.isWritable()) { ByteBuffer buffer = (ByteBuffer) key.attachment(); SocketChannel sc = (SocketChannel) key.channel(); int write = sc.write(buffer); System.out.println("实际写入字节:" + write); if (!buffer.hasRemaining()) { // 写完了 key.interestOps(key.interestOps() - SelectionKey.OP_WRITE); key.attach(null); } } } } } }

客户端

public class WriteClient { public static void main(String[] args) throws IOException { Selector selector = Selector.open(); SocketChannel sc = SocketChannel.open(); sc.configureBlocking(false); sc.register(selector, SelectionKey.OP_CONNECT | SelectionKey.OP_READ); sc.connect(new InetSocketAddress("localhost", 8080)); int count = 0; while (true) { selector.select(); Iterator<SelectionKey> iter = selector.selectedKeys().iterator(); while (iter.hasNext()) { SelectionKey key = iter.next(); iter.remove(); if (key.isConnectable()) { System.out.println(sc.finishConnect()); } else if (key.isReadable()) { ByteBuffer buffer = ByteBuffer.allocate(1024 * 1024); count += sc.read(buffer); buffer.clear(); System.out.println(count); } } } } }

1|0💡 write 为何要取消

只要向 channel 发送数据时,socket 缓冲可写,这个事件会频繁触发,因此应当只在 socket 缓冲区写不下时再关注可写事件,数据写完之后再取消关注

1|04.6 更进一步

1|0💡 利用多线程优化

现在都是多核 cpu,设计时要充分考虑别让 cpu 的力量被白白浪费

前面的代码只有一个选择器,没有充分利用多核 cpu,如何改进呢?

分两组选择器

  • 单线程配一个选择器,专门处理 accept 事件
  • 创建 cpu 核心数的线程,每个线程配一个选择器,轮流处理 read 事件
public class ChannelDemo7 { public static void main(String[] args) throws IOException { new BossEventLoop().register(); } @Slf4j static class BossEventLoop implements Runnable { private Selector boss; private WorkerEventLoop[] workers; private volatile boolean start = false; AtomicInteger index = new AtomicInteger(); public void register() throws IOException { if (!start) { ServerSocketChannel ssc = ServerSocketChannel.open(); ssc.bind(new InetSocketAddress(8080)); ssc.configureBlocking(false); boss = Selector.open(); SelectionKey ssckey = ssc.register(boss, 0, null); ssckey.interestOps(SelectionKey.OP_ACCEPT); workers = initEventLoops(); new Thread(this, "boss").start(); log.debug("boss start..."); start = true; } } public WorkerEventLoop[] initEventLoops() { // EventLoop[] eventLoops = new EventLoop[Runtime.getRuntime().availableProcessors()]; WorkerEventLoop[] workerEventLoops = new WorkerEventLoop[2]; for (int i = 0; i < workerEventLoops.length; i++) { workerEventLoops[i] = new WorkerEventLoop(i); } return workerEventLoops; } @Override public void run() { while (true) { try { boss.select(); Iterator<SelectionKey> iter = boss.selectedKeys().iterator(); while (iter.hasNext()) { SelectionKey key = iter.next(); iter.remove(); if (key.isAcceptable()) { ServerSocketChannel c = (ServerSocketChannel) key.channel(); SocketChannel sc = c.accept(); sc.configureBlocking(false); log.debug("{} connected", sc.getRemoteAddress()); workers[index.getAndIncrement() % workers.length].register(sc); } } } catch (IOException e) { e.printStackTrace(); } } } } @Slf4j static class WorkerEventLoop implements Runnable { private Selector worker; private volatile boolean start = false; private int index; private final ConcurrentLinkedQueue<Runnable> tasks = new ConcurrentLinkedQueue<>(); public WorkerEventLoop(int index) { this.index = index; } public void register(SocketChannel sc) throws IOException { if (!start) { worker = Selector.open(); new Thread(this, "worker-" + index).start(); start = true; } tasks.add(() -> { try { SelectionKey sckey = sc.register(worker, 0, null); sckey.interestOps(SelectionKey.OP_READ); worker.selectNow(); } catch (IOException e) { e.printStackTrace(); } }); worker.wakeup(); } @Override public void run() { while (true) { try { worker.select(); Runnable task = tasks.poll(); if (task != null) { task.run(); } Set<SelectionKey> keys = worker.selectedKeys(); Iterator<SelectionKey> iter = keys.iterator(); while (iter.hasNext()) { SelectionKey key = iter.next(); if (key.isReadable()) { SocketChannel sc = (SocketChannel) key.channel(); ByteBuffer buffer = ByteBuffer.allocate(128); try { int read = sc.read(buffer); if (read == -1) { key.cancel(); sc.close(); } else { buffer.flip(); log.debug("{} message:", sc.getRemoteAddress()); debugAll(buffer); } } catch (IOException e) { e.printStackTrace(); key.cancel(); sc.close(); } } iter.remove(); } } catch (IOException e) { e.printStackTrace(); } } } } }

1|0💡 如何拿到 cpu 个数

  • Runtime.getRuntime().availableProcessors() 如果工作在 docker 容器下,因为容器不是物理隔离的,会拿到物理 cpu 个数,而不是容器申请时的个数
  • 这个问题直到 jdk 10 才修复,使用 jvm 参数 UseContainerSupport 配置, 默认开启

1|04.7 UDP

  • UDP 是无连接的,client 发送数据不会管 server 是否开启
  • server 这边的 receive 方法会将接收到的数据存入 byte buffer,但如果数据报文超过 buffer 大小,多出来的数据会被默默抛弃

首先启动服务器端

public class UdpServer { public static void main(String[] args) { try (DatagramChannel channel = DatagramChannel.open()) { channel.socket().bind(new InetSocketAddress(9999)); System.out.println("waiting..."); ByteBuffer buffer = ByteBuffer.allocate(32); channel.receive(buffer); buffer.flip(); debug(buffer); } catch (IOException e) { e.printStackTrace(); } } }

输出

waiting...

运行客户端

public class UdpClient { public static void main(String[] args) { try (DatagramChannel channel = DatagramChannel.open()) { ByteBuffer buffer = StandardCharsets.UTF_8.encode("hello"); InetSocketAddress address = new InetSocketAddress("localhost", 9999); channel.send(buffer, address); } catch (Exception e) { e.printStackTrace(); } } }

接下来服务器端输出

+-------------------------------------------------+ | 0 1 2 3 4 5 6 7 8 9 a b c d e f | +--------+-------------------------------------------------+----------------+ |00000000| 68 65 6c 6c 6f |hello | +--------+-------------------------------------------------+----------------+

1|55. NIO vs BIO

1|05.1 stream vs channel

  • stream 不会自动缓冲数据,channel 会利用系统提供的发送缓冲区、接收缓冲区(更为底层)
  • stream 仅支持阻塞 API,channel 同时支持阻塞、非阻塞 API,网络 channel 可配合 selector 实现多路复用
  • 二者均为全双工,即读写可以同时进行

1|05.2 IO 模型

同步阻塞、同步非阻塞、同步多路复用、异步阻塞(没有此情况)、异步非阻塞

  • 同步:线程自己去获取结果(一个线程)
  • 异步:线程自己不去获取结果,而是由其它线程送结果(至少两个线程)

当调用一次 channel.read 或 stream.read 后,会切换至操作系统内核态来完成真正数据读取,而读取又分为两个阶段,分别为:

  • 等待数据阶段
  • 复制数据阶段

  • 阻塞 IO

  • 非阻塞 IO

  • 多路复用

  • 信号驱动

  • 异步 IO

  • 阻塞 IO vs 多路复用


1|0🔖 参考

UNIX 网络编程 - 卷 I

1|05.3 零拷贝

1|0传统 IO 问题

传统的 IO 将一个文件通过 socket 写出

File f = new File("helloword/data.txt"); RandomAccessFile file = new RandomAccessFile(file, "r"); byte[] buf = new byte[(int)f.length()]; file.read(buf); Socket socket = ...; socket.getOutputStream().write(buf);

内部工作流程是这样的:

  1. java 本身并不具备 IO 读写能力,因此 read 方法调用后,要从 java 程序的用户态切换至内核态,去调用操作系统(Kernel)的读能力,将数据读入内核缓冲区。这期间用户线程阻塞,操作系统使用 DMA(Direct Memory Access)来实现文件读,其间也不会使用 cpu

    DMA 也可以理解为硬件单元,用来解放 cpu 完成文件 IO

  2. 内核态切换回用户态,将数据从内核缓冲区读入用户缓冲区(即 byte[] buf),这期间 cpu 会参与拷贝,无法利用 DMA

  3. 调用 write 方法,这时将数据从用户缓冲区(byte[] buf)写入 socket 缓冲区,cpu 会参与拷贝

  4. 接下来要向网卡写数据,这项能力 java 又不具备,因此又得从用户态切换至内核态,调用操作系统的写能力,使用 DMA 将 socket 缓冲区的数据写入网卡,不会使用 cpu

可以看到中间环节较多,java 的 IO 实际不是物理设备级别的读写,而是缓存的复制,底层的真正读写是操作系统来完成的

  • 用户态与内核态的切换发生了 3 次,这个操作比较重量级
  • 数据拷贝了共 4 次

1|0NIO 优化

通过 DirectByteBuf

  • ByteBuffer.allocate(10) HeapByteBuffer 使用的还是 java 内存
  • ByteBuffer.allocateDirect(10) DirectByteBuffer 使用的是操作系统内存

大部分步骤与优化前相同,不再赘述。唯有一点:java 可以使用 DirectByteBuf 将堆外内存映射到 jvm 内存中来直接访问使用

  • 这块内存不受 jvm 垃圾回收的影响,因此内存地址固定,有助于 IO 读写
  • java 中的 DirectByteBuf 对象仅维护了此内存的虚引用,内存回收分成两步
    • DirectByteBuf 对象被垃圾回收,将虚引用加入引用队列
    • 通过专门线程访问引用队列,根据虚引用释放堆外内存
  • 减少了一次数据拷贝,用户态与内核态的切换次数没有减少

进一步优化(底层采用了 linux 2.1 后提供的 sendFile 方法),java 中对应着两个 channel 调用 transferTo/transferFrom 方法拷贝数据

  1. java 调用 transferTo 方法后,要从 java 程序的用户态切换至内核态,使用 DMA将数据读入内核缓冲区,不会使用 cpu
  2. 数据从内核缓冲区传输到 socket 缓冲区,cpu 会参与拷贝
  3. 最后使用 DMA 将 socket 缓冲区的数据写入网卡,不会使用 cpu

可以看到

  • 只发生了一次用户态与内核态的切换
  • 数据拷贝了 3 次

进一步优化(linux 2.4)

  1. java 调用 transferTo 方法后,要从 java 程序的用户态切换至内核态,使用 DMA将数据读入内核缓冲区,不会使用 cpu
  2. 只会将一些 offset 和 length 信息拷入 socket 缓冲区,几乎无消耗
  3. 使用 DMA 将 内核缓冲区的数据写入网卡,不会使用 cpu

整个过程仅只发生了一次用户态与内核态的切换,数据拷贝了 2 次。所谓的【零拷贝】,并不是真正无拷贝,而是在不会拷贝重复数据到 jvm 内存中,零拷贝的优点有

  • 更少的用户态与内核态的切换
  • 不利用 cpu 计算,减少 cpu 缓存伪共享
  • 零拷贝适合小文件传输

1|05.3 AIO

AIO 用来解决数据复制阶段的阻塞问题

  • 同步意味着,在进行读写操作时,线程需要等待结果,还是相当于闲置
  • 异步意味着,在进行读写操作时,线程不必等待结果,而是将来由操作系统来通过回调方式由另外的线程来获得结果

异步模型需要底层操作系统(Kernel)提供支持

  • Windows 系统通过 IOCP 实现了真正的异步 IO
  • Linux 系统异步 IO 在 2.6 版本引入,但其底层实现还是用多路复用模拟了异步 IO,性能没有优势

1|0文件 AIO

先来看看 AsynchronousFileChannel

@Slf4j public class AioDemo1 { public static void main(String[] args) throws IOException { try{ AsynchronousFileChannel s = AsynchronousFileChannel.open( Paths.get("1.txt"), StandardOpenOption.READ); ByteBuffer buffer = ByteBuffer.allocate(2); log.debug("begin..."); s.read(buffer, 0, null, new CompletionHandler<Integer, ByteBuffer>() { @Override public void completed(Integer result, ByteBuffer attachment) { log.debug("read completed...{}", result); buffer.flip(); debug(buffer); } @Override public void failed(Throwable exc, ByteBuffer attachment) { log.debug("read failed..."); } }); } catch (IOException e) { e.printStackTrace(); } log.debug("do other things..."); System.in.read(); } }

输出

13:44:56 [DEBUG] [main] c.i.aio.AioDemo1 - begin... 13:44:56 [DEBUG] [main] c.i.aio.AioDemo1 - do other things... 13:44:56 [DEBUG] [Thread-5] c.i.aio.AioDemo1 - read completed...2 +-------------------------------------------------+ | 0 1 2 3 4 5 6 7 8 9 a b c d e f | +--------+-------------------------------------------------+----------------+ |00000000| 61 0d |a. | +--------+-------------------------------------------------+----------------+

可以看到

  • 响应文件读取成功的是另一个线程 Thread-5
  • 主线程并没有 IO 操作阻塞

1|0💡 守护线程

默认文件 AIO 使用的线程都是守护线程,所以最后要执行 System.in.read() 以避免守护线程意外结束

1|0网络 AIO

public class AioServer { public static void main(String[] args) throws IOException { AsynchronousServerSocketChannel ssc = AsynchronousServerSocketChannel.open(); ssc.bind(new InetSocketAddress(8080)); ssc.accept(null, new AcceptHandler(ssc)); System.in.read(); } private static void closeChannel(AsynchronousSocketChannel sc) { try { System.out.printf("[%s] %s close\n", Thread.currentThread().getName(), sc.getRemoteAddress()); sc.close(); } catch (IOException e) { e.printStackTrace(); } } private static class ReadHandler implements CompletionHandler<Integer, ByteBuffer> { private final AsynchronousSocketChannel sc; public ReadHandler(AsynchronousSocketChannel sc) { this.sc = sc; } @Override public void completed(Integer result, ByteBuffer attachment) { try { if (result == -1) { closeChannel(sc); return; } System.out.printf("[%s] %s read\n", Thread.currentThread().getName(), sc.getRemoteAddress()); attachment.flip(); System.out.println(Charset.defaultCharset().decode(attachment)); attachment.clear(); // 处理完第一个 read 时,需要再次调用 read 方法来处理下一个 read 事件 sc.read(attachment, attachment, this); } catch (IOException e) { e.printStackTrace(); } } @Override public void failed(Throwable exc, ByteBuffer attachment) { closeChannel(sc); exc.printStackTrace(); } } private static class WriteHandler implements CompletionHandler<Integer, ByteBuffer> { private final AsynchronousSocketChannel sc; private WriteHandler(AsynchronousSocketChannel sc) { this.sc = sc; } @Override public void completed(Integer result, ByteBuffer attachment) { // 如果作为附件的 buffer 还有内容,需要再次 write 写出剩余内容 if (attachment.hasRemaining()) { sc.write(attachment); } } @Override public void failed(Throwable exc, ByteBuffer attachment) { exc.printStackTrace(); closeChannel(sc); } } private static class AcceptHandler implements CompletionHandler<AsynchronousSocketChannel, Object> { private final AsynchronousServerSocketChannel ssc; public AcceptHandler(AsynchronousServerSocketChannel ssc) { this.ssc = ssc; } @Override public void completed(AsynchronousSocketChannel sc, Object attachment) { try { System.out.printf("[%s] %s connected\n", Thread.currentThread().getName(), sc.getRemoteAddress()); } catch (IOException e) { e.printStackTrace(); } ByteBuffer buffer = ByteBuffer.allocate(16); // 读事件由 ReadHandler 处理 sc.read(buffer, buffer, new ReadHandler(sc)); // 写事件由 WriteHandler 处理 sc.write(Charset.defaultCharset().encode("server hello!"), ByteBuffer.allocate(16), new WriteHandler(sc)); // 处理完第一个 accpet 时,需要再次调用 accept 方法来处理下一个 accept 事件 ssc.accept(null, this); } @Override public void failed(Throwable exc, Object attachment) { exc.printStackTrace(); } } }

__EOF__

本文作者😎
本文链接https://www.cnblogs.com/dongye95/p/16461300.html
关于博主:评论和私信会在第一时间回复。或者直接私信我。
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角推荐一下。您的鼓励是博主的最大动力!
posted @   dongye95  阅读(52)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 单线程的Redis速度为什么快?
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 展开说说关于C#中ORM框架的用法!
历史上的今天:
2018-07-09 常用 Linux 命令
点击右上角即可分享
微信分享提示