Python - 进程

什么是进程

进程:正在进行的一个过程或者说一个任务。而负责执行任务则是cpu。

进程与程序的区别

程序仅仅只是一堆代码而已,而进程指的是程序的运行过程。

需要强调的是:同一个程序执行两次,那也是两个进程,比如打开播放器,虽然都是同一个软件,但是一个可以播放第一集,一个可以播放第二集。

并发与并行

并行 : 并行是指两者同时执行,比如赛跑,两个人都在不停的往前跑;(资源够用,比如三个线程,四核的CPU )

并发 : 并发是指资源有限的情况下,两者交替轮流使用资源,比如一段路(单核CPU资源)同时只能过一个人,A走一段后,让给B,B用完继续给A ,交替使用,目的是提高效率。

区别:

并行是从微观上,也就是在一个精确的时间片刻,有不同的程序在执行,这就要求必须有多个处理器。
并发是从宏观上,在一个时间段上可以看出是同时执行的,比如一个服务器同时处理多个session。

所有的这些进程都需被管理,于是一个支持多进程的多道程序系统是至关重要的

多道技术概念:内存中同时存入多道(多个)程序,cpu从一个进程快速切换到另外一个,使每个进程各自运行几十或几百毫秒,这样,虽然在某一个瞬间,一个cpu只能执行一个任务,但在1秒内,cpu却可以运行多个进程,这就给人产生了并行的错觉,即伪并发,以此来区分多处理器操作系统的真正硬件并行(多个cpu共享同一个物理内存)

同步\异步and阻塞\非阻塞(重点)

进程状态介绍

  在了解其他概念之前,我们首先要了解进程的几个状态。在程序运行的过程中,由于被操作系统的调度算法控制,程序会进入几个状态:就绪,运行和阻塞。

  (1)就绪(Ready)状态

  当进程已分配到除CPU以外的所有必要的资源,只要获得处理机便可立即执行,这时的进程状态称为就绪状态。

  (2)执行/运行(Running)状态当进程已获得处理机,其程序正在处理机上执行,此时的进程状态称为执行状态。

  (3)阻塞(Blocked)状态正在执行的进程,由于等待某个事件发生而无法执行时,便放弃处理机而处于阻塞状态。引起进程阻塞的事件可有多种,例如,等待I/O完成、申请缓冲区不能满足、等待信件(信号)等。

同步、异步

	同步和异步关注的是`消息通知机制`。

	所谓同步,就是在发出一个`调用`时,在没有得到结果之前,该`调用`就不返回。但是一旦调用返回,就得到返回值了。

	异步相反,`调用`在发出之后,这个调用就直接返回了,所以没有返回结果。当一个异步过程调用发出后,调用者不会立刻得到结果。而是在`调用`发出后,`被调用者`通过状态、通知来通知调用者,或通过回调函数处理这个调用。

同步比喻

老板(调用者):那个excel处理一下,马上发给我。

你(被调用者):没有回任何消息,直到吭哧吭哧做完了excel,发送给了老板。

异步比喻

老板(调用者):那个excel处理一下,马上发给我。

你(被调用者):先回复好的,然后吭哧吭哧做完了excel,发送给了老板。

阻塞、非阻塞

	阻塞和非阻塞关注的是`程序在等待调用结果(消息,返回值)`时的状态

	阻塞调用是指调用结果返回之前,当前线程会被挂起。调用线程只有在得到结果之后才会返回。

	非阻塞调用指在不能立刻得到结果之前,该调用不会阻塞当前线程。

阻塞比喻

你有一个很重要的文件要找领导签字,他不签你没发干活了,他又不在办公室,你就等在他办公室门口

非阻塞比喻

你有一个很重要的文件要找领导签字,但是他不在办公室,你把文件放在他桌子上去干自己的活了

关于unix和windows创建进程

  1. 在UNIX中该系统调用是:fork,fork会创建一个与父进程一模一样的副本,二者有相同的存储映像、同样的环境字符串和同样的打开文件(在shell解释器进程中,执行一个命令就会创建一个子进程)

  2. 在windows中该系统调用是:CreateProcess,CreateProcess既处理进程的创建,也负责把正确的程序装入新进程。

相同的是:进程创建后,父进程和子进程有各自不同的地址空间(多道技术要求物理层面实现进程之间内存的隔离),任何一个进程的在其地址空间中的修改都不会影响到另外一个进程。

不同的是:在UNIX中,子进程的初始地址空间是父进程的一个副本,提示:子进程和父进程是可以有只读的共享内存区的。但是对于windows系统来说,从一开始父进程与子进程的地址空间就是不同的。

multiprocessing模块介绍

  仔细说来,multiprocess不是一个模块而是python中一个操作、管理进程的包。 之所以叫multi是取自multiple的多功能的意思,在这个包中几乎包含了和进程有关的所有子模块。由于提供的子模块非常多,为了方便大家归类记忆,我将这部分大致分为四个部分:创建进程部分,进程同步部分,进程池部分,进程之间数据共享。

Process类的介绍

创建进程的类:

Process([group [, target [, name [, args [, kwargs]]]]]),由该类实例化得到的对象,表示一个子进程中的任务(尚未启动)

强调:
1. 需要使用关键字的方式来指定参数
2. args指定的为传给target函数的位置参数,是一个元组形式,必须有逗号

参数介绍:

group参数未使用,值始终为None
target表示调用对象,即子进程要执行的任务
args表示调用对象的位置参数元组,args=(1,2,'egon',)
kwargs表示调用对象的字典,kwargs={'name':'egon','age':18}
name为子进程的名称

方法介绍

1 p.start():启动进程,并调用该子进程中的p.run() 
2 p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法  
3 p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁
4 p.is_alive():如果p仍然运行,返回True
5 p.join([timeout]):主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout是可选的超时时间,需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程  

属性介绍

1 p.daemon:默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置
2 p.name:进程的名称
3 p.pid:进程的pid
4 p.exitcode:进程在运行时为None、如果为–N,表示被信号N结束(了解即可)
5 p.authkey:进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串。这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功(了解即可)

Process类的使用

注意:在windows中Process()必须放到# if __name__ == '__main__':下

详细解释
Since Windows has no fork, the multiprocessing module starts a new Python process and imports the calling module. 
If Process() gets called upon import, then this sets off an infinite succession of new processes (or until your machine runs out of resources). 
This is the reason for hiding calls to Process() inside

if __name__ == "__main__"
since statements inside this if-statement will not get called upon import.
由于Windows没有fork,多处理模块启动一个新的Python进程并导入调用模块。 
如果在导入时调用Process(),那么这将启动无限继承的新进程(或直到机器耗尽资源)。 
这是隐藏对Process()内部调用的原,使用if __name__ == “__main __”,这个if语句中的语句将不会在导入时被调用。

创建开启子进程的两种方式

方式一

import time
from multiprocessing import Process

def f(name):
    print('这是一个', name)
    print('我是子进程')

if __name__ == '__main__':
    p = Process(target=f, args=('参数',))   #注册,p是一个进程对象
    # p = Process(target=f, kwargs={'name':'参数'})   # 第二种传参方式
    p.start()   #启动,开启一个子进程,那么和下面的print就不知道谁先执行了
    time.sleep(1)
    print('执行主进程的内容了')

方式二

from multiprocessing import Process
import time
# 方式二:

class MyProcess(Process):
    def __init__(self,name):
        
        self.name = name
        super().__init__()
        
    def run(self):  # 必须定义一个run方法
        print('%s is runing' % (self.name))
        time.sleep(3)
        print('%s is done' % (self.name))
    
    
if __name__ == '__main__':
    p = MyProcess('太白金星')
    p.start()
    print('===主')

验证进程之间的空间隔离

在一个进程中

 x = 1000

def task():
    global x
    x = 2

task()
print(x)

在不同的进程中:

from multiprocessing import Process
import time
x = 1000

def task():
    global x
    x = 2

if __name__ == '__main__':
    p = Process(target=task)
    p.start()
    time.sleep(3)
    print(x)

进程对象的join方法

主进程自己的代码如果长,等待自己的代码执行结束

子进程的执行时间长,主进程会在主进程代码执行完毕之后等待子进程执行完毕之后,主进程才结束

import time
from multiprocessing import Process

def f(name):
    print('hello', name)
    time.sleep(1)
    print('我是子进程')


if __name__ == '__main__':
    p = Process(target=f, args=('bob',))
    p.start()
    p.join()  # 阻塞子进程直到子进程。相当于从异步程序变成同步。
    print('我是父进程')

多个进程同时运行时join的作用

注意:子进程的执行顺序不是根据启动顺序决定的

错误的使用

import time
from multiprocessing import Process


def f(name):
    print('hello', name)
    time.sleep(1)


if __name__ == '__main__':
    p_lst = []
    for i in range(5):
        p = Process(target=f, args=('bob',))
        p.start()
        p_lst.append(p)
        p.join()    # 按顺序阻塞,先阻塞一个等待它执行完,再执行第二个,然后阻塞第二个,这样就不是并发了    
    print('父进程在执行')

正确使用

import time
from multiprocessing import Process

def f(name):
    print('hello', name)
    time.sleep(1)

if __name__ == '__main__':
    p_lst = []
    for i in range(5):
        p = Process(target=f, args=('bob',))
        p.start()
        p_lst.append(p)    
        # p.json()   这时候阻塞的是最后一个进程,但是这个进程未必最后执行完
    [p.join() for p in p_lst]
    print('父进程在执行')

进程对象的其他属性(了解)

多进程中的其他方法(在主进程内结束一个子进程p.terminate(),检验一个进程是否还或者的状态p.is_alive())

结束一个进程不是在执行方法之后立即生效,需要一个操作系统响应的过程

from multiprocessing import Process
import time
import os

def task(n):
    time.sleep(3)
    print('%s is running' %n,os.getpid(),os.getppid())

if __name__ == '__main__':
    p1 = Process(target=task,args=(1,),name = '任务1')
    # print(p1.name) # 给子进程起名字
    # for i in range(3):
    #     p = Process(target=task, args=(1,))
    #     print(p.name)  # 给子进程起名字
    p1.start()
    # p1.terminate()
    # time.sleep(2)  # 睡一会,他就将我的子进程杀死了。
    # print(p1.is_alive())  # False
    print(p1.pid)
    # print('主')
    print(os.getpid())

僵尸进程与孤儿进程

僵尸进程(有害)

一个进程使用fork创建子进程,如果子进程退出,而父进程并没有调用wait或waitpid获取子进程的状态信息,那么子进程的进程描述符仍然保存在系统中。这种进程称之为僵死进程。

详细描述如下:

	我们知道在unix/linux中,正常情况下子进程是通过父进程创建的,子进程在创建新的进程。子进程的结束和父进程的运行是一个异步过程,即父进程永远无法预测子进程到底什么时候结束,如果子进程一结束就立刻回收其全部资源,那么在父进程内将无法获取子进程的状态信息。

因此,UNⅨ提供了一种机制可以保证父进程可以在任意时刻获取子进程结束时的状态信息:
1、在每个进程退出的时候,内核释放该进程所有的资源,包括打开的文件,占用的内存等。但是仍然为其保留一定的信息(包括进程号the process ID,退出状态the termination status of the process,运行时间the amount of CPU time taken by the process等)
2、直到父进程通过wait / waitpid来取时才释放. 但这样就导致了问题,如果进程不调用wait / waitpid的话,那么保留的那段信息就不会释放,其进程号就会一直被占用,但是系统所能使用的进程号是有限的,如果大量的产生僵死进程,将因为没有可用的进程号而导致系统不能产生新的进程. 此即为僵尸进程的危害,应当避免。

  任何一个子进程(init除外)在exit()之后,并非马上就消失掉,而是留下一个称为僵尸进程(Zombie)的数据结构,等待父进程处理。这是每个子进程在结束时都要经过的阶段。如果子进程在exit()之后,父进程没有来得及处理,这时用ps命令就能看到子进程的状态是“Z”。如果父进程能及时 处理,可能用ps命令就来不及看到子进程的僵尸状态,但这并不等于子进程不经过僵尸状态。 如果父进程在子进程结束之前退出,则子进程将由init接管。init将会以父进程的身份对僵尸状态的子进程进行处理。

孤儿进程(无害)

	一个父进程退出,而它的一个或多个子进程还在运行,那么那些子进程将成为孤儿进程。
	孤儿进程将被init进程(进程号为1)所收养,并由init进程对它们完成状态收集工作。
	孤儿进程是没有父进程的进程,孤儿进程这个重任就落到了init进程身上,init进程就好像是一个民政局,专门负责处理孤儿进程的善后工作。每当出现一个孤儿进程的时候,内核就把孤儿进程的父进程设置为init,而init进程会循环地wait()它的已经退出的子进程。

	这样,当一个孤儿进程凄凉地结束了其生命周期的时候,init进程就会代表党和政府出面处理它的一切善后工作。因此孤儿进程并不会有什么危害。

	我们来测试一下(创建完子进程后,主进程所在的这个脚本就退出了,当父进程先于子进程结束时,子进程会被init收养,成为孤儿进程,而非僵尸进程)
import os
import sys
import time

pid = os.getpid()
ppid = os.getppid()
print 'im father', 'pid', pid, 'ppid', ppid
pid = os.fork()
#执行pid=os.fork()则会生成一个子进程
#返回值pid有两种值:
#    如果返回的pid值为0,表示在子进程当中
#    如果返回的pid值>0,表示在父进程当中
if pid > 0:
    print 'father died..'
    sys.exit(0)

# 保证主线程退出完毕
time.sleep(1)
print 'im child', os.getpid(), os.getppid()

执行文件,输出结果:
im father pid 32515 ppid 32015
father died..
im child 32516 1
看,子进程已经被pid为1的init进程接收了,所以僵尸进程在这种情况下是不存在的,存在只有孤儿进程而已,孤儿进程声明周期结束自然会被init来销毁。

僵尸进程危害场景

	例如有个进程,它定期的产 生一个子进程,这个子进程需要做的事情很少,做完它该做的事情之后就退出了,因此这个子进程的生命周期很短,但是,父进程只管生成新的子进程,至于子进程 退出之后的事情,则一概不闻不问,这样,系统运行上一段时间之后,系统中就会存在很多的僵死进程,倘若用ps命令查看的话,就会看到很多状态为Z的进程。 严格地来说,僵死进程并不是问题的根源,罪魁祸首是产生出大量僵死进程的那个父进程。因此,当我们寻求如何消灭系统中大量的僵死进程时,答案就是把产生大 量僵死进程的那个元凶枪毙掉(也就是通过kill发送SIGTERM或者SIGKILL信号啦)。枪毙了元凶进程之后,它产生的僵死进程就变成了孤儿进 程,这些孤儿进程会被init进程接管,init进程会wait()这些孤儿进程,释放它们占用的系统进程表中的资源,这样,这些已经僵死的孤儿进程 就能瞑目而去了。

测试

产生僵尸进程的程序test.py内容如下

#coding:utf-8
from multiprocessing import Process
import time,os

def run():
    print('子',os.getpid())

if __name__ == '__main__':
    p=Process(target=run)
    p.start()
    
    print('主',os.getpid())
    time.sleep(1000)

在unix或linux系统上执行

[root@vm172-31-0-19 ~]# python3  test.py &
[1] 18652
[root@vm172-31-0-19 ~]# 主 18652
子 18653

[root@vm172-31-0-19 ~]# ps aux |grep Z
USER       PID %CPU %MEM    VSZ   RSS TTY      STAT START   TIME COMMAND
root     18653  0.0  0.0      0     0 pts/0    Z    20:02   0:00 [python3] <defunct> #出现僵尸进程
root     18656  0.0  0.0 112648   952 pts/0    S+   20:02   0:00 grep --color=auto Z

[root@vm172-31-0-19 ~]# top #执行top命令发现1zombie
top - 20:03:42 up 31 min,  3 users,  load average: 0.01, 0.06, 0.12
Tasks:  93 total,   2 running,  90 sleeping,   0 stopped,   1 zombie
%Cpu(s):  0.0 us,  0.3 sy,  0.0 ni, 99.7 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
KiB Mem :  1016884 total,    97184 free,    70848 used,   848852 buff/cache
KiB Swap:        0 total,        0 free,        0 used.   782540 avail Mem 

  PID USER      PR  NI    VIRT    RES    SHR S %CPU %MEM     TIME+ COMMAND                                                                                                                                        
root      20   0   29788   1256    988 S  0.3  0.1   0:01.50 elfin        

解决方法

等待父进程正常结束后会调用wait/waitpid去回收僵尸进程
但如果父进程是一个死循环,永远不会结束,那么该僵尸进程就会一直存在,僵尸进程过多,就是有害的
解决方法一:杀死父进程
解决方法二:对开启的子进程应该记得使用join,join会回收僵尸进程
参考python2源码注释

class Process(object):
    def join(self, timeout=None):
        '''
        Wait until child process terminates
        '''
        assert self._parent_pid == os.getpid(), 'can only join a child process'
        assert self._popen is not None, 'can only join a started process'
        res = self._popen.wait(timeout)
        if res is not None:
            _current_process._children.discard(self)

join方法中调用了wait,告诉系统释放僵尸进程。discard为从自己的children中剔除

解决方法三:http://blog.csdn.net/u010571844/article/details/50419798

守护进程

会随着主进程的结束而结束。

主进程创建守护进程

  其一:守护进程会在主进程代码执行结束后就终止(如果这个主进程还有其他的子进程,守护进程不关心)

  其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to have children

注意:进程之间是互相独立的,主进程代码运行结束,守护进程随即终止

下面这段代码没有守护进程,主进程结束后,子进程还是会不停的运行

from multiprocessing import Process

def func():
    while True:
        time.sleep(0.5)
        print("我还活着")

if __name__=="__main__":
    Process(target=func).start()
    i = 0 
    while i<10:
        print("我是socket server")
        time.sleep(1)
        i += 1

下面这段代码为守护进程,主进程结束,子进程也结束.

from multiprocessing import Process
import time


def func():
    while True:
        time.sleep(0.2)
        print("我还活着")


if __name__ == "__main__":
    p = Process(target=func)
    p.daemon = True  # 设置子进程为守护进程
    p.start()
    i = 0
    while i < 5:
        print("我是socket server")
        time.sleep(1)
        i += 1

经典例题

#主进程代码运行完毕,守护进程就会结束
from multiprocessing import Process
from threading import Thread
import time
def foo():
    print(123)
    time.sleep(1)
    print("end123")

def bar():
    print(456)
    time.sleep(3)
    print("end456")


p1=Process(target=foo)
p2=Process(target=bar)

p1.daemon=True
p1.start()
p2.start()
print("main-------") #打印该行则主进程代码结束,则守护进程p1应该被终止,可能会有p1任务执行的打印信息123,因为主进程打印main----时,p1也执行了,但是随即被终止

进程同步控制(锁、信号量、事件)

锁 —— multiprocessLock

	通过刚刚的学习,我们千方百计实现了程序的异步,让多个任务可以同时在几个进程中并发处理,他们之间的运行没有顺序,一旦开启也不受我们控制。尽管并发编程让我们能更加充分的利用IO资源,但是也给我们带来了新的问题。

	当多个进程使用同一份数据资源的时候,就会引发数据安全或顺序混乱问题。

多进程抢占输出资源

#并发运行,效率高,但竞争同一打印终端,带来了打印错乱
import os
import time
import random
from multiprocessing import Process

def work(n):
    print('%s: %s is running' %(n,os.getpid()))
    time.sleep(random.random())
    print('%s:%s is done' %(n,os.getpid()))

if __name__ == '__main__':
    for i in range(3):
        p=Process(target=work,args=(i,))
        p.start()

使用锁维护执行顺序

# 由并发变成了串行,牺牲了运行效率,但避免了竞争
import os
import time
import random
from multiprocessing import Process,Lock

def work(lock,n):
    lock.acquire()    #相当于拿钥匙进门,其他进程没有钥匙
    print('%s: %s is running' % (n, os.getpid()))
    time.sleep(random.random())
    print('%s: %s is done' % (n, os.getpid()))
    lock.release()    #相当于换钥匙
if __name__ == '__main__':
    lock=Lock()
    for i in range(3):
        p=Process(target=work,args=(lock,i))
        p.start()

  上面这种情况虽然使用加锁的形式实现了顺序的执行,但是程序又重新变成串行了,这样确实会浪费了时间,却保证了数据的安全。

  接下来,我们以模拟抢票为例,来看看数据安全的重要性。

多进程同时抢购余票

#文件db的内容为:{"count":1}
#注意一定要用双引号,不然json无法识别
#并发运行,效率高,但竞争写同一文件,数据写入错乱
from multiprocessing import Process,Lock
import time,json,random
def search():
    dic=json.load(open('db'))
    print('\033[43m剩余票数%s\033[0m' %dic['count'])

def get():
    dic=json.load(open('db'))
    time.sleep(0.1) #模拟读数据的网络延迟
    if dic['count'] >0:
        dic['count']-=1
        time.sleep(0.2) #模拟写数据的网络延迟
        json.dump(dic,open('db','w'))
        print('\033[43m购票成功\033[0m')

def task():
    search()
    get()

if __name__ == '__main__':
    for i in range(100): #模拟并发100个客户端抢票
        p=Process(target=task)
        p.start()

使用锁来保证数据安全

#文件db的内容为:{"count":5}
#注意一定要用双引号,不然json无法识别
#并发运行,效率高,但竞争写同一文件,数据写入错乱
from multiprocessing import Process,Lock
import time,json,random
def search():
    dic=json.load(open('db'))
    print('\033[43m剩余票数%s\033[0m' %dic['count'])

def get():
    dic=json.load(open('db'))
    time.sleep(random.random()) #模拟读数据的网络延迟
    if dic['count'] >0:
        dic['count']-=1
        time.sleep(random.random()) #模拟写数据的网络延迟
        json.dump(dic,open('db','w'))
        print('\033[32m购票成功\033[0m')
    else:
        print('\033[31m购票失败\033[0m')

def task(lock):
    search()
    lock.acquire()
    get()
    lock.release()

if __name__ == '__main__':
    lock = Lock()
    for i in range(100): #模拟并发100个客户端抢票
        p=Process(target=task,args=(lock,))
        p.start()

加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,没错,速度是慢了,但牺牲了速度却保证了数据安全。
虽然可以用文件共享数据实现进程间通信,但问题是:

  1. 效率低(共享数据基于文件,而文件是硬盘上的数据)
  2. 需要自己加锁处理

因此我们最好找寻一种解决方案能够兼顾:

  1. 效率高(多个进程共享一块内存的数据)

  2. 帮我们处理好锁问题.

这就是mutiprocessing模块为我们提供的基于消息的IPC通信机制:队列和管道。

队列和管道都是将数据存放于内存中
队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来,
我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁问题,而且在进程数目增多时,往往可以获得更好的可获展性。

信号量(multiprocess.Semaphore)

  假设有20个人排队上厕所,但是只有4个门,这时候如果直接多进程,会20个人同时进去,显然不对,所以需要信号量。

# 一套资源  同一时间 只能被n个人访问
# 某一段代码 同一时间 只能被n个进程执行
import time
import random
from multiprocessing import Process
from multiprocessing import Semaphore

# sem = Semaphore(4)
# sem.acquire()
# print('拿到第一把钥匙')
# sem.acquire()
# print('拿到第二把钥匙')
# sem.acquire()
# print('拿到第三把钥匙')
# sem.acquire()
# print('拿到第四把钥匙')
# sem.acquire()
# print('拿到第五把钥匙')
def ktv(i,sem):
    sem.acquire()    #获取钥匙
    print('%s走进ktv'%i)
    time.sleep(random.randint(1,5))
    print('%s走出ktv'%i)
    sem.release()   


if __name__ == '__main__' :
    sem = Semaphore(4)
    for i in range(20):
        p = Process(target=ktv,args=(i,sem))
        p.start()

事件(multiprocess.Event)

  一个信号可以使所有的进程都进入阻塞状态,也可以控制所有的进程解除阻塞。

方法

# set 和 clear
    #  分别用来修改一个事件的状态 True或者False
# is_set 用来查看一个事件的状态
# wait 是依据事件的状态来决定自己是否在wait处阻塞
    #  False阻塞 True不阻塞

示例

from multiprocessing import Event
一个信号可以使所有的进程都进入阻塞状态
也可以控制所有的进程解除阻塞
一个事件被创建之后,默认是阻塞状态
e = Event()  # 创建了一个事件
print(e.is_set())   # 查看一个事件的状态,默认被设置成阻塞
e.set()      # 将这个事件的状态改为True
print(e.is_set())
e.wait()     # 是依据e.is_set()的值来决定是否阻塞的
print(123456)
e.clear()    # 将这个事件的状态改为False
print(e.is_set())    print("8"*10)        # 这里是打印的,因为没有wait
e.wait()     # 等待 事件的信号被变成True
print('*'*10)

红绿信号灯问题

# 红绿灯事件
import time
import random
from multiprocessing import Event,Process
def cars(e,i):
    if not e.is_set():
        print('car%i在等待'%i)
        e.wait()    # 阻塞 直到得到一个 事件状态变成 True 的信号
    print('\033[0;32;40mcar%i通过\033[0m' % i)

def light(e):
    while True:
        if e.is_set():
            e.clear()
            print('\033[31m红灯亮了\033[0m')
        else:
            e.set()
            print('\033[32m绿灯亮了\033[0m')
        time.sleep(2)

if __name__ == '__main__':
    e = Event()
    traffic = Process(target=light,args=(e,))
    traffic.start()
    for i in range(20):
        car = Process(target=cars, args=(e,i))
        car.start()
        time.sleep(random.random())   # 模拟随机来的车,所以设个随机时间

进程间通信(队列和管道)

队列(multiprocess.Queue)

创建队列的类(底层就是以管道和锁定的方式实现):

Queue([maxsize]):创建共享的进程队列,Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。 

参数介绍:

maxsize是队列中允许最大项数,省略则无大小限制。

方法介绍:

主要方法

q.put方法用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。
q.get方法可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常.

q.get_nowait():同q.get(False)
q.put_nowait():同q.put(False)

q.empty():调用此方法时q为空则返回True,该结果不可靠,比如在返回True的过程中,如果队列中又加入了项目。
q.full():调用此方法时q已满则返回True,该结果不可靠,比如在返回True的过程中,如果队列中的项目被取走。
q.qsize():返回队列中目前项目的正确数量,结果也不可靠,理由同q.empty()和q.full()一样

其他方法(了解)

q.cancel_join_thread():不会在进程退出时自动连接后台线程。可以防止join_thread()方法阻塞
q.close():关闭队列,防止队列中加入更多数据。调用此方法,后台线程将继续写入那些已经入队列但尚未写入的数据,但将在此方法完成时马上关闭。如果q被垃圾收集,将调用此方法。关闭队列不会在队列使用者中产生任何类型的数据结束信号或异常。例如,如果某个使用者正在被阻塞在get()操作上,关闭生产者中的队列不会导致get()方法返回错误。
q.join_thread():连接队列的后台线程。此方法用于在调用q.close()方法之后,等待所有队列项被消耗。默认情况下,此方法由不是q的原始创建者的所有进程调用。调用q.cancel_join_thread方法可以禁止这种行为

简单使用:单看队列用法

'''
multiprocessing模块支持进程间通信的两种主要形式:管道和队列
都是基于消息传递实现的,但是队列接口
'''

from multiprocessing import Queue
q=Queue(3)

#put ,get ,put_nowait,get_nowait,full,empty
q.put(3)
q.put(3)
q.put(3)
# q.put(3)   # 如果队列已经满了,程序就会停在这里,等待数据被别人取走,再将数据放入队列。
           # 如果队列中的数据一直不被取走,程序就会永远停在这里。
try:
    q.put_nowait(3) # 可以使用put_nowait,如果队列满了不会阻塞,但是会因为队列满了而报错。
except: # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去,但是会丢掉这个消息。
    print('队列已经满了')

# 因此,我们再放入数据之前,可以先看一下队列的状态,如果已经满了,就不继续put了。
print(q.full()) #满了

print(q.get())
print(q.get())
print(q.get())
# print(q.get()) # 同put方法一样,如果队列已经空了,那么继续取就会出现阻塞。
try:
    q.get_nowait(3) # 可以使用get_nowait,如果队列满了不会阻塞,但是会因为没取到值而报错。
except: # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去。
    print('队列已经空了')

print(q.empty()) #空了

​ 上面这个例子还没有加入进程通信,只是先来看看队列为我们提供的方法,以及这些方法的使用和现象。

import time
from multiprocessing import Process, Queue

def f(q):
    q.put([time.asctime(), 'from Eva', 'hello'])  #调用主函数中p进程传递过来的进程参数 put函数为向队列中添加一条数据。

if __name__ == '__main__':
    q = Queue() #创建一个Queue对象
    p = Process(target=f, args=(q,)) #创建一个进程
    p.start()
    print(q.get())
    p.join()

​ 上面是一个queue的简单应用,使用队列q对象调用get函数来取得队列中最先进入的数据。 接下来看一个稍微复杂一些的例子:批量生产数据放入队列再批量取走

import os
import time
import multiprocessing

# 向queue中输入数据的函数
def inputQ(queue):
    info = str(os.getpid()) + '(put):' + str(time.asctime())
    queue.put(info)

# 向queue中输出数据的函数
def outputQ(queue):
    info = queue.get()
    print ('%s%s\033[32m%s\033[0m'%(str(os.getpid()), '(get):',info))

# Main
if __name__ == '__main__':
    multiprocessing.freeze_support()
    record1 = []   # store input processes
    record2 = []   # store output processes
    queue = multiprocessing.Queue(3)

    # 输入进程
    for i in range(10):
        process = multiprocessing.Process(target=inputQ,args=(queue,))
        process.start()
        record1.append(process)

    # 输出进程
    for i in range(10):
        process = multiprocessing.Process(target=outputQ,args=(queue,))
        process.start()
        record2.append(process)

    for p in record1:
        p.join()

    for p in record2:
        p.join()

生产者消费者模型

  在并发编程中使用生产者和消费者模式能够解决绝大多数并发问题。该模式通过平衡生产线程和消费线程的工作能力来提高程序的整体处理数据的速度。

为什么要使用生产者和消费者模式

  在线程世界里,生产者就是生产数据的线程,消费者就是消费数据的线程。在多线程开发当中,如果生产者处理速度很快,而消费者处理速度很慢,那么生产者就必须等待消费者处理完,才能继续生产数据。同样的道理,如果消费者的处理能力大于生产者,那么消费者就必须等待生产者。为了解决这个问题于是引入了生产者和消费者模式。

什么是生产者消费者模式

  生产者消费者模式是通过一个容器来解决生产者和消费者的强耦合问题。生产者和消费者彼此之间不直接通讯,而通过阻塞队列来进行通讯,所以生产者生产完数据之后不用等待消费者处理,直接扔给阻塞队列,消费者不找生产者要数据,而是直接从阻塞队列里取,阻塞队列就相当于一个缓冲区,平衡了生产者和消费者的处理能力。

基于队列实现生产者消费者模型

from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
    while True:
        res=q.get()
        time.sleep(random.randint(1,3))
        print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res))

def producer(q):
    for i in range(10):
        time.sleep(random.randint(1,3))
        res='包子%s' %i
        q.put(res)
        print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))

if __name__ == '__main__':
    q=Queue()
    #生产者们:即厨师们
    p1=Process(target=producer,args=(q,))

    #消费者们:即吃货们
    c1=Process(target=consumer,args=(q,))

    #开始
    p1.start()
    c1.start()
    print('主')

  此时的问题是主进程永远不会结束,原因是:生产者p在生产完后就结束了,但是消费者c在取空了q之后,则一直处于死循环中且卡在q.get()这一步。

  解决方式无非是让生产者在生产完毕后,往队列中再发一个结束信号,这样消费者在接收到结束信号后就可以break出死循环。

改良版1:生产者在生产完毕后发送结束信号None

from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
    while True:
        res=q.get()
        if res is None:break #收到结束信号则结束
        time.sleep(random.randint(1,3))
        print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res))

def producer(q):
    for i in range(10):
        time.sleep(random.randint(1,3))
        res='包子%s' %i
        q.put(res)
        print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))
    q.put(None) #发送结束信号
if __name__ == '__main__':
    q=Queue()
    #生产者们:即厨师们
    p1=Process(target=producer,args=(q,))

    #消费者们:即吃货们
    c1=Process(target=consumer,args=(q,))

    #开始
    p1.start()
    c1.start()
    print('主')

注意:结束信号None,不一定要由生产者发,主进程里同样可以发,但主进程需要等生产者结束后才应该发送该信号。

改良版2:主进程在生产者生产完毕后发送结束信号None

from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
    while True:
        res=q.get()
        if res is None:break #收到结束信号则结束
        time.sleep(random.randint(1,3))
        print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res))

def producer(q):
    for i in range(2):
        time.sleep(random.randint(1,3))
        res='包子%s' %i
        q.put(res)
        print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))

if __name__ == '__main__':
    q=Queue()
    #生产者们:即厨师们
    p1=Process(target=producer,args=(q,))

    #消费者们:即吃货们
    c1=Process(target=consumer,args=(q,))

    #开始
    p1.start()
    c1.start()

    p1.join()
    q.put(None) #发送结束信号
    print('主')

  但上述解决方式,在有多个生产者和多个消费者时,我们则需要用一个很low的方式去解决

多个消费者的例子:有几个消费者就需要发送几次结束信号

from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
    while True:
        res=q.get()
        if res is None:break #收到结束信号则结束
        time.sleep(random.randint(1,3))
        print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res))

def producer(name,q):
    for i in range(2):
        time.sleep(random.randint(1,3))
        res='%s%s' %(name,i)
        q.put(res)
        print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))

if __name__ == '__main__':
    q=Queue()
    #生产者们:即厨师们
    p1=Process(target=producer,args=('包子',q))
    p2=Process(target=producer,args=('骨头',q))
    p3=Process(target=producer,args=('泔水',q))

    #消费者们:即吃货们
    c1=Process(target=consumer,args=(q,))
    c2=Process(target=consumer,args=(q,))

    #开始
    p1.start()
    p2.start()
    p3.start()
    c1.start()

    p1.join() #必须保证生产者全部生产完毕,才应该发送结束信号
    p2.join()
    p3.join()
    q.put(None) #有几个消费者就应该发送几次结束信号None
    q.put(None) #发送结束信号
    print('主')

JoinableQueue([maxsize])

  创建可连接的共享进程队列。这就像是一个Queue对象,但队列允许项目的使用者通知生产者项目已经被成功处理。通知进程是使用共享的信号和条件变量来实现的。

JoinableQueue的实例p除了与Queue对象相同的方法之外,还具有以下方法:

q.task_done() 
使用者使用此方法发出信号,表示q.get()返回的项目已经被处理。如果调用此方法的次数大于从队列中删除的项目数量,将引发ValueError异常。

q.join() 
生产者将使用此方法进行阻塞,直到队列中所有项目均被处理。阻塞将持续到为队列中的每个项目均调用q.task_done()方法为止。 
下面的例子说明如何建立永远运行的进程,使用和处理队列上的项目。生产者将项目放入队列,并等待它们被处理。

  JoinableQueue队列实现消费之生产者模型

from multiprocessing import Process,JoinableQueue
import time,random,os
def consumer(q):
    while True:
        res=q.get()
        time.sleep(random.randint(1,3))
        print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res))
        q.task_done() #向q.join()发送一次信号,证明一个数据已经被取走了

def producer(name,q):
    for i in range(10):
        time.sleep(random.randint(1,3))
        res='%s%s' %(name,i)
        q.put(res)
        print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))
    q.join() #生产完毕,使用此方法进行阻塞,直到队列中所有项目均被处理。


if __name__ == '__main__':
    q=JoinableQueue()
    #生产者们:即厨师们
    p1=Process(target=producer,args=('包子',q))
    p2=Process(target=producer,args=('骨头',q))
    p3=Process(target=producer,args=('泔水',q))

    #消费者们:即吃货们
    c1=Process(target=consumer,args=(q,))
    c2=Process(target=consumer,args=(q,))
    c1.daemon=True
    c2.daemon=True

    #开始
    p_l=[p1,p2,p3,c1,c2]
    for p in p_l:
        p.start()

    p1.join()
    p2.join()
    p3.join()
    print('主') 
    
    #主进程等--->p1,p2,p3等---->c1,c2
    #p1,p2,p3结束了,证明c1,c2肯定全都收完了p1,p2,p3发到队列的数据
    #因而c1,c2也没有存在的价值了,不需要继续阻塞在进程中影响主进程了。应该随着主进程的结束而结束,所以设置成守护进程就可以了。

JoinableQueue队列实现消费之生产者模型

原理

#  在消费者这一端:
    # 每次获取一个数据
    # 处理一个数据
    # 发送一个记号 : 标志一个数据被处理成功

# 在生产者这一端:
    # 每一次生产一个数据,
    # 且每一次生产的数据都放在队列中
    # 在队列中刻上一个记号
    # 当生产者全部生产完毕之后,
    # join信号 : 已经停止生产数据了
                # 且要等待之前被刻上的记号都被消费完
                # 当数据都被处理完时,join阻塞结束

# consumer 中把所有的任务消耗完
# producer 端 的 join感知到,停止阻塞
# 所有的producer进程结束
# 主进程中的p.join结束
# 主进程中代码结束
# 守护进程(消费者的进程)结束

管道(multiprocess.Pipe)

了解即可,正常情况用队列

介绍

#创建管道的类:
Pipe([duplex]):在进程之间创建一条管道,并返回元组(conn1,conn2),其中conn1,conn2表示管道两端的连接对象,强调一点:必须在产生Process对象之前产生管道
#参数介绍:
dumplex:默认管道是全双工的,如果将duplex射成False,conn1只能用于接收,conn2只能用于发送。
#主要方法:
    conn1.recv():接收conn2.send(obj)发送的对象。如果没有消息可接收,recv方法会一直阻塞。如果连接的另外一端已经关闭,那么recv方法会抛出EOFError。
    conn1.send(obj):通过连接发送对象。obj是与序列化兼容的任意对象
 #其他方法:
conn1.close():关闭连接。如果conn1被垃圾回收,将自动调用此方法
conn1.fileno():返回连接使用的整数文件描述符
conn1.poll([timeout]):如果连接上的数据可用,返回True。timeout指定等待的最长时限。如果省略此参数,方法将立即返回结果。如果将timeout射成None,操作将无限期地等待数据到达。
 
conn1.recv_bytes([maxlength]):接收c.send_bytes()方法发送的一条完整的字节消息。maxlength指定要接收的最大字节数。如果进入的消息,超过了这个最大值,将引发IOError异常,并且在连接上无法进行进一步读取。如果连接的另外一端已经关闭,再也不存在任何数据,将引发EOFError异常。
conn.send_bytes(buffer [, offset [, size]]):通过连接发送字节数据缓冲区,buffer是支持缓冲区接口的任意对象,offset是缓冲区中的字节偏移量,而size是要发送字节数。结果数据以单条消息的形式发出,然后调用c.recv_bytes()函数进行接收    
 
conn1.recv_bytes_into(buffer [, offset]):接收一条完整的字节消息,并把它保存在buffer对象中,该对象支持可写入的缓冲区接口(即bytearray对象或类似的对象)。offset指定缓冲区中放置消息处的字节位移。返回值是收到的字节数。如果消息长度大于可用的缓冲区空间,将引发BufferTooShort异常。

初使用

from multiprocessing import Pipe,Process

def func(conn1,conn2):    # conn1 和 conn2双向通信,一遍放一遍收,所以有两个链接
    conn2.close()
    while True:
        try :
            msg = conn1.recv()
            print(msg)
        except EOFError:     #没有数据可以取,还是recv的话会主动抛出 
            conn1.close()
            break

if __name__ == '__main__':
    conn1, conn2 = Pipe()
    Process(target=func,args = (conn1,conn2)).start()
    conn1.close()
    for i in range(20):
        conn2.send('吃了么')
    conn2.close()

  应该特别注意管道端点的正确管理问题。如果是生产者或消费者中都没有使用管道的某个端点,就应将它关闭。这也说明了为何在 生产者中关闭了管道的输出端,在消费者中关闭管道的输入端。如果忘记执行这些步骤,程序可能在消费者中的 recv() 操作上阻塞。管道是由操作系统进行引用计数的,必须在所有进程中关闭管道后才能生成 EOFError 异常。因此,在生产者中关闭管道不会有任何效果,除非消费者也关闭了相同的管道端点。

用管道也做生产者消费者模型

from multiprocessing import Lock,Pipe,Process
def producer(con,pro,name,food):
    con.close()
    for i in range(100):
        f = '%s生产%s%s'%(name,food,i)
        print(f)
        pro.send(f)
    pro.send(None)
    pro.send(None)
    pro.send(None)
    pro.close()

def consumer(con,pro,name,lock):
    pro.close()
    while True:
            lock.acquire()
            food = con.recv()
            lock.release()
            if food is None:
                con.close()
                break
            print('%s吃了%s' % (name, food))
if __name__ == '__main__':
    con,pro = Pipe()
    lock= Lock()
    p = Process(target=producer,args=(con,pro,'egon','泔水'))
    c1 = Process(target=consumer, args=(con, pro, 'alex',lock))
    c2 = Process(target=consumer, args=(con, pro, 'bossjin',lock))
    c3 = Process(target=consumer, args=(con, pro, 'wusir',lock))
    c1.start()
    c2.start()
    c3.start()
    p.start()
    con.close()
    pro.close()

from multiprocessing import Process,Pipe,Lock

def consumer(produce, consume,name,lock):
    produce.close()
    while True:
        lock.acquire()
        baozi=consume.recv()
        lock.release()
        if baozi:
            print('%s 收到包子:%s' %(name,baozi))
        else:
            consume.close()
            break

def producer(produce, consume,n):
    consume.close()
    for i in range(n):
        produce.send(i)
    produce.send(None)
    produce.send(None)
    produce.close()

if __name__ == '__main__':
    produce,consume=Pipe()
    lock = Lock()
    c1=Process(target=consumer,args=(produce,consume,'c1',lock))
    c2=Process(target=consumer,args=(produce,consume,'c2',lock))
    p1=Process(target=producer,args=(produce,consume,30))
    c1.start()
    c2.start()
    p1.start()
    produce.close()
    consume.close()

pipe 数据不安全性
IPC
加锁来控制操作管道的行为 来避免进程之间争抢数据造成的数据不安全现象

队列 进程之间数据安全的
管道 + 锁

​ 管道进程不安全,有可能多个进程同时取一个数据,所以 recv 要加锁。正常情况下用队列,不要用管道。

进程之间的数据共享(multiprocess.Manager)(了解)

展望未来,基于消息传递的并发编程是大势所趋

即便是使用线程,推荐做法也是将程序设计为大量独立的线程集合,通过消息队列交换数据。

这样极大地减少了对使用锁定和其他同步手段的需求,还可以扩展到分布式系统中。

但进程间应该尽量避免通信,即便需要通信,也应该选择进程安全的工具来避免加锁带来的问题。

以后我们会尝试使用数据库来解决现在进程之间的数据共享问题。

进程间数据是独立的,可以借助于队列或管道实现通信,二者都是基于消息传递的
虽然进程间数据独立,但可以通过Manager实现数据共享,事实上Manager的功能远不止于此

A manager object returned by Manager() controls a server process which holds Python objects and allows other processes to manipulate them using proxies.

A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Barrier, Queue, Value and Array.

--

from multiprocessing import Manager,Process,Lock
def work(d,lock):
    with lock: #不加锁而操作共享的数据,肯定会出现数据错乱
        d['count']-=1

if __name__ == '__main__':
    lock=Lock()
    with Manager() as m:
        dic=m.dict({'count':100})
        p_l=[]
        for i in range(100):
            p=Process(target=work,args=(dic,lock))
            p_l.append(p)
            p.start()
        for p in p_l:
            p.join()
        print(dic)

  manager也有问题,进程数据不安全。比如上面的例子,要减1,有可能两个进程同时减,本来应该减2的,但是由于同时减,结果只是减1。所以也要加锁。

进程池和multiprocess.Pool模块

进程池 (CPU核心 + 1)

  为什么要有进程池?进程池的概念。

  在程序实际处理问题过程中,忙时会有成千上万的任务需要被执行,闲时可能只有零星任务。那么在成千上万个任务需要被执行的时候,我们就需要去创建成千上万个进程么?首先,创建进程需要消耗时间,销毁进程也需要消耗时间。第二即便开启了成千上万的进程,操作系统也不能让他们同时执行,这样反而会影响程序的效率。因此我们不能无限制的根据任务开启或者结束进程。那么我们要怎么做呢?

  在这里,要给大家介绍一个进程池的概念,定义一个池子,在里面放上固定数量的进程,有需求来了,就拿一个池中的进程来处理任务,等到处理完毕,进程并不关闭,而是将进程再放回进程池中继续等待任务。如果有很多任务需要执行,池中的进程数量不够,任务就要等待之前的进程执行任务完毕归来,拿到空闲进程才能继续执行。也就是说,池中进程的数量是固定的,那么同一时间最多有固定数量的进程在运行。这样不会增加操作系统的调度难度,还节省了开闭进程的时间,也一定程度上能够实现并发效果。

multiprocess.Pool模块

参数

Pool([numprocess  [,initializer [, initargs]]]):创建进程池

1 numprocess:要创建的进程数,如果省略,将默认使用cpu_count()的值
2 initializer:是每个工作进程启动时要执行的可调用对象,默认为None
3 initargs:是要传给initializer的参数组

主要方法

p.apply(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。
'''需要强调的是:此操作并不会在所有池工作进程中并执行func函数。如果要通过不同参数并发地执行func函数,必须从不同线程调用p.apply()函数或者使用p.apply_async()'''

p.apply_async(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。
'''此方法的结果是AsyncResult类的实例,callback是可调用对象,接收输入参数。当func的结果变为可用时,将理解传递给callback。callback禁止执行任何阻塞操作,否则将接收其他异步操作中的结果。'''
  
p.close():关闭进程池,防止进一步操作。如果所有操作持续挂起,它们将在工作进程终止前完成

P.jion():等待所有工作进程退出。此方法只能在close()或teminate()之后调用

其他方法

1 方法apply_async()和map_async()的返回值是AsyncResul的实例obj。实例具有以下方法
2 obj.get():返回结果,如果有必要则等待结果到达。timeout是可选的。如果在指定时间内还没有到达,将引发异常。如果远程操作中引发了异常,它将在调用此方法时再次被引发。
3 obj.ready():如果调用完成,返回True
4 obj.successful():如果调用完成且没有引发异常,返回True,如果在结果就绪之前调用此方法,引发异常
5 obj.wait([timeout]):等待结果变为可用。
6 obj.terminate():立即终止所有工作进程,同时不执行任何清理或结束任何挂起工作。如果p被垃圾回收,将自动调用此函数

进程池和多进程效率对比

import time
from multiprocessing import Pool,Process
def func(n):
    for i in range(10):
        print(n+1)

def func2(n):
    for i in range(10):
        print(n+2)
if __name__ == '__main__':
    start = time.time()
    pool = Pool(5)               # 5个进程
    pool.map(func,range(100))    # 100个任务(自带close和join)    pool.map(func2,range(100))   # 100g个任务
    # pool.map(func2,[('alex',1),'egon'])    # 100个任务,这里传进去的必须是可迭代的
    t1 = time.time() - start

    start = time.time()
    p_lst = []
    for i in range(100):
        p = Process(target=func,args=(i,))
        p_lst.append(p)
        p.start()
    for p in p_lst :p.join()
    t2 = time.time() - start
    print(t1,t2)

同步

import os,time
from multiprocessing import Pool

def work(n):
    print('%s run' %os.getpid())
    time.sleep(3)
    return n**2

if __name__ == '__main__':
    p=Pool(3) #进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
    res_l=[]
    for i in range(10):
        res=p.apply(work,args=(i,)) # 同步调用,直到本次任务执行完毕拿到res,等待任务work执行的过程中可能有阻塞也可能没有阻塞
                                    # 但不管该任务是否存在阻塞,同步调用都会在原地等着        
        res_l.append(res)           
    print(res_l)

异步

import os
import time
import random
from multiprocessing import Pool

def work(n):
    print('%s run' %os.getpid())
    time.sleep(random.random())
    return n**2

if __name__ == '__main__':
    p=Pool(3) #进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
    res_l=[]
    for i in range(10):
        res=p.apply_async(work,args=(i,)) # 异步运行,根据进程池中有的进程数,每次最多3个子进程在异步执行
                                          # 返回结果之后,将结果放入列表,归还进程,之后再执行新的任务
                                          # 需要注意的是,进程池中的三个进程不会同时开启或者同时结束
                                          # 而是执行完一个就释放一个进程,这个进程就去接收新的任务。  
        res_l.append(res)

    # 异步apply_async用法:如果使用异步提交的任务,主进程需要使用jion,等待进程池内任务都处理完,然后可以用get收集结果
    # 否则,主进程结束,进程池可能还没来得及执行,也就跟着一起结束了
    p.close()         # 结束进程池接受任务
    p.join()          # 感知进程池中的任务执行结束
    for res in res_l:
        print(res.get()) #使用get来获取apply_aync的结果,如果是apply,则没有get方法,因为apply是同步执行,立刻获取结果,也根本无需get

server:进程池版socket并发聊天

#Pool内的进程数默认是cpu核数,假设为4(查看方法os.cpu_count())
#开启6个客户端,会发现2个客户端处于等待状态
#在每个进程内查看pid,会发现pid使用为4个,即多个客户端公用4个进程
from socket import *
from multiprocessing import Pool
import os

server=socket(AF_INET,SOCK_STREAM)
server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
server.bind(('127.0.0.1',8080))
server.listen(5)

def talk(conn):
    print('进程pid: %s' %os.getpid())
    while True:
        try:
            msg=conn.recv(1024)
            if not msg:break
            conn.send(msg.upper())
        except Exception:
            break

if __name__ == '__main__':
    p=Pool(4)
    while True:
        conn,*_=server.accept()
        p.apply_async(talk,args=(conn,))
        # p.apply(talk,args=(conn,client_addr)) #同步的话,则同一时间只有一个客户端能访问

client

from socket import *

client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8080))


while True:
    msg=input('>>: ').strip()
    if not msg:continue

    client.send(msg.encode('utf-8'))
    msg=client.recv(1024)
    print(msg.decode('utf-8'))

发现:并发开启多个客户端,服务端同一时间只有4个不同的pid,只能结束一个客户端,另外一个客户端才会进来.

回调函数

需要回调函数的场景:进程池中任何一个任务一旦处理完了,就立即告知主进程:我好了额,你可以处理我的结果了。主进程则调用一个函数去处理该结果,该函数即回调函数

我们可以把耗时间(阻塞)的任务放到进程池中,然后指定回调函数(主进程负责执行),这样主进程在执行回调函数时就省去了I/O的过程,直接拿到的是任务的结果。

get返回结果

from multiprocessing import Process
def func(i):    time.sleep(0.5)
    return i*i

if __name__ == "__main__":
    p = Pool(5)
    for i in range(10):
        res = p.apply_async(func,args=(i,))  #apply的结果就是func的返回值
        print(res.get())  #阻塞等待结果,所有虽然是异步的,但是执行的时候,返回还是同步的,需要等待func的计算结果

先提交后get

from multiprocessing import Process
def func(i):
    time.sleep(0.5)
    return i*i

if __name__ == "__main__":
    p = Pool(5)
    res_l = []
    for i in range(10):
        res = p.apply_async(func,args=(i,))  #apply的结果就是func的返回值
        res_l.append(res)
    for res in res_l:print(res.get())

使用map(算是另外一种异步执行的东西)

from multiprocessing import Process
def func(i):
    time.sleep(0.5)
    return i*i

if __name__ == "__main__":
    p = Pool(5)
    ret = p.map(func,range(10))
    print(ret)

回调函数 callback (不能传参,因为自动有参数了,是func1的返回值。回调函数在主进程中执行)

import os
from multiprocessing import Pool
def func1(n):
    print("in func1",os.getpid())
    return n*n

def func2(nn):
    print("in func2",os.getpid())
    print(nn)

if __name__ == "__main__":
    print("主进程:",os.getpid())
    p = Pool(5)
    for i in range(10):
        p.apply_async(func1,args=(10,),callback=func2)
    p.close()
    p.join()

使用多进程请求多个url来减少网络等待浪费的时间

from multiprocessing import Pool
import requests
import json
import os

def get_page(url):
    print('<进程%s> get %s' %(os.getpid(),url))
    respone=requests.get(url)
    if respone.status_code == 200:
        return {'url':url,'text':respone.text}

def pasrse_page(res):
    print('<进程%s> parse %s' %(os.getpid(),res['url']))
    parse_res='url:<%s> size:[%s]\n' %(res['url'],len(res['text']))
    with open('db.txt','a') as f:
        f.write(parse_res)


if __name__ == '__main__':
    urls=[
        'https://www.baidu.com',
        'https://www.python.org',
        'https://www.openstack.org',
        'https://help.github.com/',
        'http://www.sina.com.cn/'
    ]

    p=Pool(3)
    res_l=[]
    for url in urls:
        res=p.apply_async(get_page,args=(url,),callback=pasrse_page)  # 处理数据在主进程处理
        res_l.append(res)

    p.close()
    p.join()
    print([res.get() for res in res_l]) #拿到的是get_page的结果,其实完全没必要拿该结果,该结果已经传给回调函数处理了

'''
打印结果:
<进程3388> get https://www.baidu.com
<进程3389> get https://www.python.org
<进程3390> get https://www.openstack.org
<进程3388> get https://help.github.com/
<进程3387> parse https://www.baidu.com
<进程3389> get http://www.sina.com.cn/
<进程3387> parse https://www.python.org
<进程3387> parse https://help.github.com/
<进程3387> parse http://www.sina.com.cn/
<进程3387> parse https://www.openstack.org
[{'url': 'https://www.baidu.com', 'text': '<!DOCTYPE html>\r\n...',...}]
'''

  处理数据用回调函数,因为多个进程处理数据在主进程中变成串行,时间还是会远远短于取网络上爬取数据的时间(因为网络延迟)。所以处理数据在回调函数中

posted @ 2021-05-19 20:36  dongye95  阅读(81)  评论(0编辑  收藏  举报