深度学习pytorch常用操作以及流程

在微信公众号上看到这篇文章,担心以后想找的时候迷路,所以记录到了自己的博客上,侵扰致歉,随时联系可删除。

1.基本张量操作

1. 1 创建张量

介绍: torch.tensor() 是 PyTorch 中用于创建张量的基本函数。

简单使用:

import torch

# 创建一个标量(零维张量)
scalar_tensor = torch.tensor(42)
print(scalar_tensor)

# 创建一个一维张量
vector_tensor = torch.tensor([1, 2, 3])
print(vector_tensor)

# 创建一个二维张量
matrix_tensor = torch.tensor([[1, 2], [3, 4]])
print(matrix_tensor)

1.2 张量形状变换

介绍: torch.view() 用于改变张量的形状,但要确保元素数量不变。

简单使用:

import torch

# 创建一个一维张量
original_tensor = torch.arange(1, 9)  # 1, 2, 3, ..., 8
print("原始张量:", original_tensor)

# 将一维张量转换为二维张量
reshaped_tensor = original_tensor.view(2, 4)
print("形状变换后的张量:", reshaped_tensor)

1.3 张量拼接

介绍: torch.cat() 用于沿指定维度拼接张量。

简单使用:

import torch

# 创建两个张量
tensor1 = torch.tensor([[1, 2], [3, 4]])
tensor2 = torch.tensor([[5, 6]])

# 沿着行维度拼接张量
concatenated_tensor = torch.cat((tensor1, tensor2), dim=0)
print("拼接后的张量:", concatenated_tensor)

1.4 张量索引与切片

介绍: 使用索引和切片可以获取张量的特定元素或子集。

简单使用:

import torch

# 创建一个二维张量
matrix_tensor = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# 获取第一行
first_row = matrix_tensor[0, :]
print("第一行:", first_row)

# 获取第一列
first_column = matrix_tensor[:, 0]
print("第一列:", first_column)

# 切片获取子集
subset_tensor = matrix_tensor[1:, 1:]
print("子集张量:", subset_tensor)

2.重要的张量处理方式

2.1 张量转置

介绍: torch.t() 用于计算矩阵的转置。

简单使用:

import torch

# 创建一个二维张量
matrix_tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])

# 计算转置
transposed_tensor = torch.t(matrix_tensor)
print("转置后的张量:", transposed_tensor)

2.2 矩阵乘法

介绍: torch.mm() 用于计算两个矩阵的乘积。

简单使用:

import torch

# 创建两个矩阵
matrix1 = torch.tensor([[1, 2], [3, 4]])
matrix2 = torch.tensor([[5, 6], [7, 8]])

# 计算矩阵乘积
result_matrix = torch.mm(matrix1, matrix2)
print("矩阵乘积:", result_matrix)

2.3 元素级乘法

介绍: torch.mul() 用于执行两个张量的元素级乘法。

简单使用:

import torch

# 创建两个张量
tensor1 = torch.tensor([[1, 2], [3, 4]])
tensor2 = torch.tensor([[5, 6], [7, 8]])

# 元素级乘法
result_tensor = torch.mul(tensor1, tensor2)
print("元素级乘法结果:", result_tensor)

2.4 求和

介绍: torch.sum() 用于计算张量元素的和。

简单使用:

import torch

# 创建一个张量
tensor = torch.tensor([[1, 2], [3, 4]])

# 计算张量元素的和
sum_result = torch.sum(tensor)
print("张量元素的和:", sum_result)

2.5 平均值

介绍: torch.mean() 用于计算张量元素的平均值。

简单使用:

import torch

# 创建一个张量
tensor = torch.tensor([[1.0, 2.0], [3.0, 4.0]])

# 计算张量元素的平均值
mean_result = torch.mean(tensor)
print("张量元素的平均值:", mean_result)

3.张量:数学和统计功能

3.1 标准差

介绍: torch.std() 用于计算张量元素的标准差。

简单使用:

import torch

# 创建一个张量
tensor = torch.tensor([[1.0, 2.0], [3.0, 4.0]])

# 计算张量元素的标准差
std_result = torch.std(tensor)
print("张量元素的标准差:", std_result)

3.2 最大值

介绍: torch.max() 用于找到张量中的最大值及其索引。

简单使用:

import torch

# 创建一个张量
tensor = torch.tensor([[1, 2], [3, 4]])

# 找到张量中的最大值及其索引
max_value, max_index = torch.max(tensor, dim=1)
print("最大值:", max_value)
print("最大值索引:", max_index)

3.3 最小值

介绍: torch.min() 用于找到张量中的最小值及其索引。

简单使用:

import torch

# 创建一个张量
tensor = torch.tensor([[1, 2], [3, 4]])

# 找到张量中的最小值及其索引
min_value, min_index = torch.min(tensor, dim=1)
print("最小值:", min_value)
print("最小值索引:", min_index)

3.4 绝对值

介绍: torch.abs() 用于计算张量元素的绝对值。

简单使用:

import torch

# 创建一个张量
tensor = torch.tensor([[-1, 2], [-3, 4]])

# 计算张量元素的绝对值
abs_result = torch.abs(tensor)
print("张量元素的绝对值:", abs_result)

3.5 指数运算

介绍: torch.exp() 用于计算张量元素的指数。

简单使用:

import torch

# 创建一个张量
tensor = torch.tensor([[1.0, 2.0], [3.0, 4.0]])

# 计算张量元素的指数
exp_result = torch.exp(tensor)
print("张量元素的指数:", exp_result)

3.6 对数运算

介绍: torch.log() 用于计算张量元素的自然对数。

简单使用:

import torch

# 创建一个张量
tensor = torch.tensor([[1.0, 2.0], [3.0, 4.0]])

# 计算张量元素的自然对数
log_result = torch.log(tensor)
print("张量元素的自然对数:", log_result)

4.张量:深度学习方面的操作

4.1 向下取整

介绍: torch.floor() 用于将张量元素向下取整,得到不超过每个元素的最大整数。

简单使用:

import torch

# 创建一个张量
tensor = torch.tensor([[1.2, 2.8], [3.5, 4.1]])

# 向下取整
floor_result = torch.floor(tensor)
print("向下取整结果:", floor_result)

4.2 向上取整

介绍: torch.ceil() 用于将张量元素向上取整,得到不小于每个元素的最小整数。

简单使用:

import torch

# 创建一个张量
tensor = torch.tensor([[1.2, 2.8], [3.5, 4.1]])

# 向上取整
ceil_result = torch.ceil(tensor)
print("向上取整结果:", ceil_result)

4.3 梯度清零

介绍: 在训练深度学习模型时,使用 optimizer.zero_grad() 将梯度清零是一个常见的步骤,以防止梯度累积。

简单使用:

import torch
import torch.optim as optim

# 创建一个模型和优化器
model = torch.nn.Linear(3, 1)
optimizer = optim.SGD(model.parameters(), lr=0.01)

# 前向传播、反向传播、梯度清零
input_data = torch.randn(10, 3)
output = model(input_data)
loss = torch.nn.functional.mse_loss(output, torch.randn(10, 1))
loss.backward()
optimizer.zero_grad()

4.4 梯度裁剪

介绍: 用于防止梯度爆炸的技术,通过对模型的梯度进行裁剪。

简单使用:

import torch
import torch.nn as nn
import torch.optim as optim

# 创建一个模型和优化器
model = nn.Linear(3, 1)
optimizer = optim.SGD(model.parameters(), lr=0.01)

# 前向传播、反向传播
input_data = torch.randn(10, 3)
output = model(input_data)
loss = torch.nn.functional.mse_loss(output, torch.randn(10, 1))
loss.backward()

# 梯度裁剪
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()

4.5 数据加载与处理

介绍: torch.utils.data 模块提供了用于加载和处理数据的工具,包括 DataLoaderDataset 等类。

简单使用:

import torch
from torch.utils.data import DataLoader, Dataset

# 自定义数据集类
class CustomDataset(Dataset):
    def __init__(self, data):
        self.data = data

    def __len__(self):
        return len(self.data)

    def __getitem__(self, index):
        return self.data[index]

# 创建自定义数据集实例
my_dataset = CustomDataset([1, 2, 3, 4, 5])

# 创建数据加载器
data_loader = DataLoader(my_dataset, batch_size=2, shuffle=True)

# 迭代数据加载器
for batch in data_loader:
    print("Batch:", batch)

5.训练和优化的核心概念

5.1 模型定义与搭建

介绍: torch.nn.Module 是 PyTorch 中用于定义和搭建模型的基类。通过继承该类,可以创建自定义的深度学习模型。

简单使用:

import torch
import torch.nn as nn

# 自定义模型类
class SimpleModel(nn.Module):
    def __init__(self, input_size, output_size):
        super(SimpleModel, self).__init__()
        self.linear = nn.Linear(input_size, output_size)

    def forward(self, x):
        return self.linear(x)

# 创建模型实例
model = SimpleModel(input_size=10, output_size=5)

# 查看模型结构
print(model)

5.2 损失函数

介绍: torch.nn.functional 模块提供了多种损失函数,例如均方误差损失(mse_loss)、交叉熵损失(cross_entropy)等。

简单使用:

import torch
import torch.nn.functional as F

# 创建模型输出和目标标签
output = torch.randn(3, 5)
target = torch.randint(5, (3,), dtype=torch.long)

# 计算交叉熵损失
loss = F.cross_entropy(output, target)
print("交叉熵损失:", loss.item())

5.3 优化器

介绍: torch.optim 模块提供了多种优化器,例如随机梯度下降(SGD)、Adam 等。

简单使用:

import torch
import torch.optim as optim

# 创建模型和优化器
model = SimpleModel(input_size=10, output_size=5)
optimizer = optim.SGD(model.parameters(), lr=0.01)

# 在训练循环中使用优化器
for epoch in range(10):
    # ... 其他训练步骤 ...
    
    # 梯度清零
    optimizer.zero_grad()
    
    # 计算损失
    loss = compute_loss()
    
    # 反向传播
    loss.backward()
    
    # 参数更新
    optimizer.step()

5.4 学习率调度

介绍: torch.optim.lr_scheduler 模块提供了多种学习率调度器,例如学习率衰减等。

简单使用:

import torch
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR

# 创建模型、优化器和学习率调度器
model = SimpleModel(input_size=10, output_size=5)
optimizer = optim.SGD(model.parameters(), lr=0.01)
scheduler = StepLR(optimizer, step_size=5, gamma=0.1)

# 在训练循环中使用学习率调度器
for epoch in range(20):
    # ... 其他训练步骤 ...
    
    # 梯度清零
    optimizer.zero_grad()
    
    # 计算损失
    loss = compute_loss()
    
    # 反向传播
    loss.backward()
    
    # 参数更新
    optimizer.step()
    
    # 更新学习率
    scheduler.step()

5.5 模型保存与加载

介绍: torch.save()torch.load() 用于模型的保存和加载。

简单使用:

import torch

# 保存模型
torch.save(model.state_dict(), 'model.pth')

# 加载模型
loaded_model = SimpleModel(input_size=10, output_size=5)
loaded_model.load_state_dict(torch.load('model.pth'))

5.6 GPU 加速

介绍: PyTorch 允许在GPU上运行张量和模型,以加速深度学习任务。

简单使用:

import torch

# 检查是否有可用的GPU
if torch.cuda.is_available():
    # 将模型和张量移动到GPU
    model = model.cuda()
    tensor = tensor.cuda()

5.7 分布式训练

介绍: PyTorch 支持分布式训练,使得可以在多个GPU或多台机器上进行模型训练。

简单使用:

import torch
import torch.nn as nn
import torch.optim as optim
import torch.multiprocessing as mp
import torch.distributed as dist

# 初始化分布式训练环境
mp.spawn(train, nprocs=4, args=(model, criterion, optimizer, train_loader))

5.8 数据并行与模型并行

介绍: 数据并行是将数据分布在多个GPU上进行处理,而模型并行是将模型的不同部分分布在多个GPU上。

简单使用:

import torch
import torch.nn as nn

# 数据并行
model = nn.DataParallel(model)

# 模型并行
class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.part1 = nn.Linear(10, 5)
        self.part2 = nn.Linear(5, 1)

# 将模型的不同部分放在不同的GPU上
model_part1 = MyModel().part1.cuda(0)
model_part2 = MyModel().part2.cuda(1)

6.pytorch 高级框架和工具

6.1 图像处理与加载

介绍: torchvision.transforms 模块提供了许多用于图像处理和加载的转换操作,例如裁剪、旋转、缩放等。

简单使用:

import torch
from torchvision import transforms
from PIL import Image

# 定义图像转换
transform = transforms.Compose([
    transforms.Resize((256, 256)),
    transforms.RandomCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
])

# 加载图像并应用转换
image = Image.open('example.jpg')
transformed_image = transform(image)

6.2 图像加载

介绍: torchvision.datasets.ImageFolder 允许从文件夹中加载图像数据集。

简单使用:

import torch
from torchvision import datasets, transforms

# 定义图像转换
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
])

# 加载图像数据集
dataset = datasets.ImageFolder(root='path/to/data', transform=transform)

7.自定义操作

7.1 自定义损失函数

介绍: 你可以通过继承 torch.nn.Module 类来创建自定义的损失函数。

简单使用:

import torch
import torch.nn as nn

# 自定义损失函数类
class CustomLoss(nn.Module):
    def __init__(self, weight):
        super(CustomLoss, self).__init__()
        self.weight = weight

    def forward(self, predictions, targets):
        loss = torch.mean((predictions - targets) ** 2)
        weighted_loss = self.weight * loss
        return weighted_loss

# 使用自定义损失函数
loss_function = CustomLoss(weight=0.5)

7.2 自定义初始化方法

介绍: 你可以自定义模型参数的初始化方法。

简单使用:

import torch.nn.init as init

# 自定义初始化方法
def custom_init(m):
    if isinstance(m, nn.Linear):
        init.constant_(m.weight, val=0.1)
        init.constant_(m.bias, val=0)

# 在模型中应用初始化方法
model.apply(custom_init)

7.3 自定义学习率调度器

介绍: 你可以通过继承 torch.optim.lr_scheduler._LRScheduler 类来创建自定义学习率调度器。

简单使用:

import torch.optim as optim

# 自定义学习率调度器类
class CustomLRScheduler(optim.lr_scheduler._LRScheduler):
    def __init__(self, optimizer):
        super(CustomLRScheduler, self).__init__(optimizer)

    def get_lr(self):
        # 自定义学习率调度逻辑
        pass

# 使用自定义学习率调度器
optimizer = optim.SGD(model.parameters(), lr=0.01)
lr_scheduler = CustomLRScheduler(optimizer)

7.4 可视化工具

介绍: 使用可视化工具可以更好地理解模型的训练过程。

简单使用:

from torch.utils.tensorboard import SummaryWriter

# 创建 TensorBoard 写入器
writer = SummaryWriter()

# 写入标量值
writer.add_scalar('Loss', loss, global_step=epoch)

# 写入模型结构
writer.add_graph(model, input_data)

# 在命令行中运行 TensorBoard
# tensorboard --logdir=runs

7.5 自定义数据加载器

介绍: 继承 torch.utils.data.Dataset 类可以自定义数据加载器。

简单使用:

from torch.utils.data import Dataset

# 自定义数据加载器类
class CustomDataset(Dataset):
    def __init__(self, data, labels):
        self.data = data
        self.labels = labels

    def __len__(self):
        return len(self.data)

    def __getitem__(self, index):
        return self.data[index], self.labels[index]

# 使用自定义数据加载器
custom_dataset = CustomDataset(data, labels)

7.6 PyTorch 转 ONNX

介绍: 将 PyTorch 模型转换为 ONNX(Open Neural Network Exchange)格式,以在其他框架或硬件上部署模型。

简单使用:

import torch
import torchvision.models as models

# 加载预训练模型
model = models.resnet18(pretrained=True)

# 将 PyTorch 模型转为 ONNX 格式
dummy_input = torch.randn(1, 3, 224, 224)
onnx_path = "resnet18.onnx"
torch.onnx.export(model, dummy_input, onnx_path, verbose=True)

7.7 混合精度训练

介绍: 使用混合精度训练可以加速模型训练,减少显存占用。

简单使用:

import torch
from torch.cuda.amp import autocast, GradScaler

# 创建模型和优化器
model = ...
optimizer = ...

# 创建混合精度训练的梯度缩放器
scaler = GradScaler()

# 在训练循环中使用混合精度训练
for epoch in range(num_epochs):
    for input_data, target in train_loader:
        optimizer.zero_grad()
        
        # 使用 autocast 将前向传播、损失计算和反向传播放在混合精度环境中
        with autocast():
            output = model(input_data)
            loss = loss_fn(output, target)
        
        # 反向传播和梯度更新
        scaler.scale(loss).backward()
        scaler.step(optimizer)
        scaler.update()

7.8 PyTorch 中的异步数据加载

介绍: PyTorch 允许使用 torch.utils.data.DataLoadernum_workers 参数实现异步数据加载,加速数据加载过程。

简单使用:

import torch
from torch.utils.data import DataLoader

# 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=4)

7.9 PyTorch 中的分布式训练与模型并行

介绍: PyTorch 支持分布式训练,可以在多个 GPU 或多台机器上进行模型训练。此外,PyTorch 也支持模型并行,允许将模型的不同部分分布在多个 GPU 上。

简单使用:

import torch
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel

# 初始化分布式训练环境
dist.init_process_group(backend='nccl', init_method='tcp://localhost:23456', rank=0, world_size=1)

# 创建模型并将其移到 GPU
model = nn.Sequential(nn.Linear(10, 5), nn.ReLU(), nn.Linear(5, 1))
model = model.to('cuda')

# 使用 DistributedDataParallel 包装模型
model = DistributedDataParallel(model)

# 定义优化器和损失函数
optimizer = optim.SGD(model.parameters(), lr=0.01)
criterion = nn.MSELoss()

# 在训练循环中使用 DistributedDataParallel
for epoch in range(num_epochs):
    for input_data, target in train_loader:
        input_data, target = input_data.to('cuda'), target.to('cuda')
        output = model(input_data)
        loss = criterion(output, target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

# 在命令行中使用多 GPU 训练:
# python -m torch.distributed.launch --nproc_per_node=NUM_GPUS your_training_script.py

7.10 PyTorch 中的自动微分(Autograd)

介绍: PyTorch 中的 Autograd 模块提供了自动微分的功能,可以方便地计算梯度。

简单使用:

import torch

# 创建一个需要梯度的张量
x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)

# 定义一个计算图
y = x.pow(2).sum()

# 反向传播,计算梯度
y.backward()

# 获取梯度
print(x.grad)

7.11 PyTorch 中的动态计算图

介绍: PyTorch 中的计算图是动态的,允许根据实际执行情况动态构建计算图。

简单使用:

import torch

# 创建动态计算图
def dynamic_computation(x):
    if x.sum() > 0:
        return x * 2
    else:
        return x * 3

# 构建计算图
x = torch.tensor([1.0, -1.0], requires_grad=True)
result = dynamic_computation(x)

# 反向传播,计算梯度
result.sum().backward()

# 获取梯度
print(x.grad)

7.12 PyTorch 中的模型保存与加载

介绍: PyTorch 提供了保存和加载模型的工具,可以保存整个模型或仅保存模型的参数。

简单使用:

import torch

# 定义一个简单的模型
class SimpleModel(torch.nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.fc = torch.nn.Linear(10, 5)

    def forward(self, x):
        return self.fc(x)

# 创建模型实例
model = SimpleModel()

# 保存整个模型
torch.save(model, 'whole_model.pth')

# 保存模型参数
torch.save(model.state_dict(), 'model_params.pth')

# 加载整个模型
loaded_model = torch.load('whole_model.pth')

# 加载模型参数到新的模型实例
new_model = SimpleModel()
new_model.load_state_dict(torch.load('model_params.pth'))
import torch
import torch.nn as nn

# 创建模型和损失函数
model = ...
criterion = ...

# 创建数据加载器
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)

# 模型评估
model.eval()
total_loss = 0.0
correct_predictions = 0

with torch.no_grad():
    for inputs, labels in test_loader:
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        total_loss += loss.item()
        
        _, predicted_class = torch.max(outputs, 1)
        correct_predictions += (predicted_class == labels).sum().item()

average_loss = total_loss / len(test_loader.dataset)
accuracy = correct_predictions / len(test_loader.dataset)

print(f'Average Loss: {average_loss}, Accuracy: {accuracy}')

参考文章

50个超强pytorch操作!!

【创作不易,望点赞收藏,若有疑问,请留言,谢谢】

posted @   东血  阅读(346)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)

本站勉强运行 1774 天 14 小时 06 分 24 秒

目录导航
目录导航
深度学习pytorch常用操作以及流程
1.基本张量操作
1. 1 创建张量
1.2 张量形状变换
1.3 张量拼接
1.4 张量索引与切片
2.重要的张量处理方式
2.1 张量转置
2.2 矩阵乘法
2.3 元素级乘法
2.4 求和
2.5 平均值
3.张量:数学和统计功能
3.1 标准差
3.2 最大值
3.3 最小值
3.4 绝对值
3.5 指数运算
3.6 对数运算
4.张量:深度学习方面的操作
4.1 向下取整
4.2 向上取整
4.3 梯度清零
4.4 梯度裁剪
4.5 数据加载与处理
5.训练和优化的核心概念
5.1 模型定义与搭建
5.2 损失函数
5.3 优化器
5.4 学习率调度
5.5 模型保存与加载
5.6 GPU 加速
5.7 分布式训练
5.8 数据并行与模型并行
6.pytorch 高级框架和工具
6.1 图像处理与加载
6.2 图像加载
7.自定义操作
7.1 自定义损失函数
7.2 自定义初始化方法
7.3 自定义学习率调度器
7.4 可视化工具
7.5 自定义数据加载器
7.6 PyTorch 转 ONNX
7.7 混合精度训练
7.8 PyTorch 中的异步数据加载
7.9 PyTorch 中的分布式训练与模型并行
7.10 PyTorch 中的自动微分(Autograd)
7.11 PyTorch 中的动态计算图
7.12 PyTorch 中的模型保存与加载
参考文章
发布于 2024-01-15 21:17
点击右上角即可分享
微信分享提示