yolov5+deepsort+slowfast复现

1.运行环境

ubuntu 18.04.1
Cuda 11.5
Python 3.8.15
torch 1.10.1+cu113
torchvision 0.11.2+cu113

2.安装PyTorchVideo

cd /home
git clone https://gitee.com/YFwinston/pytorchvideo.git
cd pytorchvideo
pip install -e .

3.安装yolov5-slowfast-deepsort-PytorchVideo

下载yolov5-slowfast-deepsort-PytorchVideo

使用gitee(推荐)
cd /home
git clone https://gitee.com/YFwinston/yolov5-slowfast-deepsort-PytorchVideo.git

安装

cd /home/yolov5-slowfast-deepsort-PytorchVideo
pip install -r requirements2.txt

下载文件

[yolov5_file](阿里云盘 (aliyundrive.com))
[slowfast_file](阿里云盘 (aliyundrive.com))

我是将ckpt.t7放在了:/user-data/yolov5_file/
我是将SLOWFAST_8x8_R50_DETECTION.pyth放在了:/user-data/slowfast_file/
我是将yolov5l6.pt放在了:/user-data/yolov5_file/
我是将yolov5-master.zip放在了:/user-data/yolov5_file/

mkdir -p /home/yolov5-slowfast-deepsort-PytorchVideo/deep_sort/deep_sort/deep/checkpoint/
cp /user-data/yolov5_file/ckpt.t7 /home/yolov5-slowfast-deepsort-PytorchVideo/deep_sort/deep_sort/deep/checkpoint/ckpt.t7

mkdir -p /root/.cache/torch/hub/checkpoints/ 
cp /user-data/slowfast_file/SLOWFAST_8x8_R50_DETECTION.pyth /root/.cache/torch/hub/checkpoints/SLOWFAST_8x8_R50_DETECTION.pyth

cp /user-data/yolov5_file/yolov5l6.pt /home/yolov5-slowfast-deepsort-PytorchVideo/yolov5l6.pt

cp /user-data/yolov5_file/yolov5-master.zip /root/.cache/torch/hub/master.zip

4.测试

我将1.mp4存放在了/home/yolov5-slowfast-deepsort-PytorchVideo/demo/中
cd /home/yolov5-slowfast-deepsort-PytorchVideo
mkdir demo

cd /home/yolov5-slowfast-deepsort-PytorchVideo
python yolo_slowfast.py --input ./demo/1.mp4

报错1

image-20230525090949575

报错2

image-20230525090841387

重新下载新包解决报错2 (8条消息) 【PyTorchVideo教程02】快速安装PyTorchVideo 采用 yolov5、slowfast、deepsort对学生课堂行为进行检测_yolov5和slowfast怎么结合_CV-杨帆的博客-CSDN博客

照着这个连接操作

报错3

image-20230525105721452

image-20230525111629546

5.替换成自己的数据集

5.1 yolov5模型训练自己的数据集

数据集目录结构,使用labelImg标注该类数据就可以

image-20230526212300227

最后类似于python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128开始运行

5.2 deepsort模型训练自己的reid数据集

以一段视频为例,将此段视频图片的帧按一秒取一次帧得到,然后使用labelImg进行标注

然后使用下面的代码将标注的部分裁剪出来,裁剪使用的代码可用下面这一段

#根据预测出来的txt文件裁剪图片
import os
import cv2
from tqdm import tqdm

image_input = 'E:\\pythoncode\\shipinphto\\2'
txt_input = 'E:\\pythoncode\\shipinphto\\label_2\\'
path_output = "E:\\pythoncode\\path_output\\2\\"    # 裁剪出来的小图保存的根目录
class_names_path = 'classes.txt'

img_total = []
txt_total = []

def read_class_name(path):        #读取path下的类别民
    f = open(path,'r')
    classes_name = []
    for i in f.readlines():
        classes_name.append(i.strip())
    return classes_name
classes_name = read_class_name(class_names_path)

file_image = os.listdir(image_input)
for filename in file_image:#在做jpg文件名列表
     first,last = os.path.splitext(filename)
     img_total.append(first)

file_txt = os.listdir(txt_input)
for filename in file_txt:#在做txt文件名列表
     first,last = os.path.splitext(filename)
     txt_total.append(first)

for img_ in tqdm(img_total):
    if img_ in txt_total:
        filename_img = img_+".jpg"
        path1 = os.path.join(image_input,filename_img)
        img = cv2.imread(path1)
        filename_txt = img_+'.txt'     #预测出来的txt文件没有后缀名,有则加 {+".txt"}
        h = img.shape[0]
        w = img.shape[1]
        n = 1
        with open(os.path.join(txt_input,filename_txt),"r+",encoding="utf-8",errors="ignore") as f:
            for line in f:
                aa = line.split(" ")
                # if not int(aa[0]) == 0: continue     #判断需要裁剪的类别:0--vehicle
                x_center = w * float(aa[1])       # aa[1]左上点的x坐标
                y_center = h * float(aa[2])       # aa[2]左上点的y坐标
                width = int(w*float(aa[3]))       # aa[3]图片width
                height = int(h*float(aa[4]))      # aa[4]图片height
                lefttopx = int(x_center-width/2.0)
                lefttopy = int(y_center-height/2.0)
                roi = img[lefttopy+1:lefttopy+height+3,lefttopx+1:lefttopx+width+1] # [左上y:右下y,左上x:右下x]
                                                                          # (y1:y2,x1:x2)需要调参,否则裁剪出来的小图可能不太好
                if roi.size == 0: continue
                filename_last = img_+"_"+str(n)+".jpg"      # 裁剪出来的小图文件名
                x = int(aa[0])
                path2 = os.path.join(path_output,classes_name[x])           # 需要在path_output路径下创建一个cut_txt文件夹
                if not os.path.exists(path2):
                    os.mkdir(path2)
                try:
                     cv2.imwrite(os.path.join(path2,filename_last),roi)
                except:
                    continue
                
                n = n+1
    else:
        continue

裁剪出图片之后就按照图片里面有的目标进行分类,打个比方:标注的是苹果,那么我分类的时候要不同的苹果放到不同文件夹里。

如下所示:

image-20230526213951507

之后要修改代码里的两个地方,变成如下这样:

一是train.py文件:

transform_train = torchvision.transforms.Compose([
    torchvision.transforms.Resize((128, 64)),
    torchvision.transforms.RandomCrop((128, 64), padding=4),
    torchvision.transforms.RandomHorizontalFlip(),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize(
        [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

二是model.py文件(只用修改num_classes为自己数据集的类别就好,我这里只有四种进行测试):

class Net(nn.Module):
    def __init__(self, num_classes=4 ,reid=False):
        super(Net,self).__init__()
        # 3 128 64
        self.conv = nn.Sequential(
            nn.Conv2d(3,64,3,stride=1,padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            # nn.Conv2d(32,32,3,stride=1,padding=1),
            # nn.BatchNorm2d(32),
            # nn.ReLU(inplace=True),
            nn.MaxPool2d(3,2,padding=1),
        )

最后python train.py开始训练

5.3 slowfast模型训练自己的数据集

首先这里说明一下这里训练的是ava数据集,所以下面主要是ava数据集的制作步骤,先看一下ava数据集的分布

image-20230604111620566

这里的数据集制作方法可以参考,需要看具体内容可以去下载数据集

要想制作好的数据集在slowfast上跑起来,主要是下面代码的修改:

1.首先是配置文件,我修改的是slowfast源码里的config/AVA/c2/SLOW_8x8_R50.yaml的文件

TRAIN:
  ENABLE: True #这里要注意
  DATASET: ava
  BATCH_SIZE: 2
  EVAL_PERIOD: 1
  CHECKPOINT_PERIOD: 1
  AUTO_RESUME: True
  # CHECKPOINT_FILE_PATH: path to pretrain model
  CHECKPOINT_TYPE: caffe2
DATA:
  NUM_FRAMES: 4
  SAMPLING_RATE: 16
  TRAIN_JITTER_SCALES: [256, 320]
  TRAIN_CROP_SIZE: 224
  TEST_CROP_SIZE: 256
  INPUT_CHANNEL_NUM: [3]
  PATH_TO_DATA_DIR: '/home/xxx/pythoncode/slowfast/datasets' #这里要注意
DETECTION:
  ENABLE: True
  ALIGNED: True
AVA:
  BGR: False
  DETECTION_SCORE_THRESH: 0.9
  FRAME_DIR: '/home/xxx/pythoncode/slowfast/datasets/frames' #这里要注意
  FRAME_LIST_DIR: '/home/xxx/pythoncode/slowfast/datasets/frame_lists' #这里要注意
  ANNOTATION_DIR: '/home/xxx/pythoncode/slowfast/datasets/annotations' #这里要注意
  DETECTION_SCORE_THRESH: 0.8
  TRAIN_PREDICT_BOX_LISTS: [
    "person_box_67091280_iou90/ava_detection_train_boxes_and_labels_include_negative_v2.2.csv", #这里要注意
    "person_box_67091280_iou90/ava_detection_train_boxes_and_labels_include_negative_v2.2.csv", #这里要注意
  ]
  TEST_PREDICT_BOX_LISTS: ["person_box_67091280_iou90/ava_detection_val_boxes_and_labels.csv"] #这里要注意
RESNET:
  ZERO_INIT_FINAL_BN: True
  WIDTH_PER_GROUP: 64
  NUM_GROUPS: 1
  DEPTH: 50
  TRANS_FUNC: bottleneck_transform
  STRIDE_1X1: False
  NUM_BLOCK_TEMP_KERNEL: [[3], [4], [6], [3]]
  SPATIAL_DILATIONS: [[1], [1], [1], [2]]
  SPATIAL_STRIDES: [[1], [2], [2], [1]]
NONLOCAL:
  LOCATION: [[[]], [[]], [[]], [[]]]
  GROUP: [[1], [1], [1], [1]]
  INSTANTIATION: softmax
BN:
  USE_PRECISE_STATS: False
  NUM_BATCHES_PRECISE: 200
SOLVER:
  MOMENTUM: 0.9
  WEIGHT_DECAY: 1e-7
  OPTIMIZING_METHOD: sgd
MODEL:
  NUM_CLASSES: 80
  ARCH: slow
  MODEL_NAME: ResNet
  LOSS_FUNC: bce
  DROPOUT_RATE: 0.5
  HEAD_ACT: sigmoid
TEST:
  ENABLE: False #这里要注意
  DATASET: ava
  BATCH_SIZE: 1
DATA_LOADER:
  NUM_WORKERS: 2
  PIN_MEMORY: True
NUM_GPUS: 1
NUM_SHARDS: 1
RNG_SEED: 0
OUTPUT_DIR: .

2.然后是slowfast/slowfast/datasets/ava_helper.py

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.

import logging
import os
from collections import defaultdict

from slowfast.utils.env import pathmgr

logger = logging.getLogger(__name__)

FPS = 30 
AVA_VALID_FRAMES = range(2, 9) #这里要注意


def load_image_lists(cfg, is_train):
    """
    Loading image paths from corresponding files.

    Args:
        cfg (CfgNode): config.
        is_train (bool): if it is training dataset or not.

    Returns:
        image_paths (list[list]): a list of items. Each item (also a list)
            corresponds to one video and contains the paths of images for
            this video.
        video_idx_to_name (list): a list which stores video names.
    """
    list_filenames = [
        os.path.join(cfg.AVA.FRAME_LIST_DIR, filename)
        for filename in (
            cfg.AVA.TRAIN_LISTS if is_train else cfg.AVA.TEST_LISTS
        )
    ]
    image_paths = defaultdict(list)
    video_name_to_idx = {}
    video_idx_to_name = []
    for list_filename in list_filenames:
        with pathmgr.open(list_filename, "r") as f:
            f.readline()
            for line in f:
                row = line.split(",") #这里要注意
                # The format of each row should follow:
                # original_vido_id video_id frame_id path labels.
                assert len(row) == 5
                video_name = row[0]

                if video_name not in video_name_to_idx:
                    idx = len(video_name_to_idx)
                    video_name_to_idx[video_name] = idx
                    video_idx_to_name.append(video_name)

                data_key = video_name_to_idx[video_name]

                image_paths[data_key].append(
                    os.path.join(cfg.AVA.FRAME_DIR, row[3])
                )

    image_paths = [image_paths[i] for i in range(len(image_paths))]

    logger.info(
        "Finished loading image paths from: %s" % ", ".join(list_filenames)
    )

    return image_paths, video_idx_to_name

参考文章

【PyTorchVideo教程02】快速安装PyTorchVideo 采用 yolov5、slowfast、deepsort对学生课堂行为进行检测_yolov5和slowfast怎么结合_CV-杨帆的博客-CSDN博客

Whiffe/yolov5-slowfast-deepsort-PytorchVideo (github.com)

Yolov5 + Deepsort 重新训练自己的数据(保姆级超详细)_yolov5+deepsort训练自己的数据集_武大人民泌外I科人工智能团队的博客-CSDN博客

YOLOv5+Deepsort训练自己的数据集实现多目标跟踪_科研段子手的博客-CSDN博客

deepsort训练车辆特征参数_ckpt.t7_王定邦的博客-CSDN博客

【目标跟踪】Yolov5_DeepSort_Pytorch训练自己的数据 - 知乎 (zhihu.com)

自定义ava数据集及训练与测试 完整版 时空动作/行为 视频数据集制作 yolov5, deep sort, VIA MMAction, SlowFast_CV-杨帆的博客-CSDN博客

如若遇到问题,可私信联系

posted @ 2023-05-25 14:48  东血  阅读(1655)  评论(0编辑  收藏  举报

载入天数...载入时分秒...