括号匹配

B - Parencodings
Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u

Description

Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways: 
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence). 
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence). 

Following is an example of the above encodings: 

S (((()()())))
P-sequence 4 5 6666
W-sequence 1 1 1456

Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string. 

Input

The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.

Output

The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.

Sample Input

2
6
4 5 6 6 6 6
9 
4 6 6 6 6 8 9 9 9

Sample Output

1 1 1 4 5 6
1 1 2 4 5 1 1 3 9


 1 #include<stdio.h>
 2 int main()
 3 {
 4     int t,n,i,j,m,k,h,f;
 5     int a[50];
 6     scanf("%d",&t);
 7     while(t--)
 8     {
 9         scanf("%d",&f);
10         int k=0;
11         j=0;
12         n=f;
13         while(f--)
14         {
15             scanf("%d",&h);
16             m=h-j;
17             j=h;
18             for(i=k;i<(k+m);i++)
19                 a[i]=1;
20             a[i]=0;
21             k=i+1;
22         }
23         for(i=0;i<2*n-1;i++)
24         {
25             if(a[i]==0){k=0;
26                 for(j=i;a[j]!=1;j--)
27                 {
28                     if(a[j]==2)k++;
29                 }
30                 k++;
31                 a[j]=2;
32                 printf("%d ",k);
33             }
34         }
35         k=0;
36         for(j=2*n-1;a[j]!=1;j--)
37             if(a[j]==2)k++;
38         k++;
39         a[j]=2;
40         printf("%d\n",k);
41     }
42     return 0;
43 }

 

posted @ 2015-05-24 18:10  dongq  阅读(168)  评论(0编辑  收藏  举报