expectation-maximization algorithm ---- PRML读书笔记

An elegant and powerful method for finding maximum likelihood solutions for models with latent variables is called the expectation-maximization algorithm, or EM algorithm.

If we assume that the data points are drawn independently from the distribution, then the log of the likelihood function is given by

lnp(X|π,μ,Σ)=Σnln{ΣkπkN(xnkk)}

EM for Gaussian Mixtures

Given a Gaussian mixture model, the goal is to maximize the likelihood function with respect to the parameters(comprising the means and covariances of the components

and the mixing coefficients).

1.Initialize the means μk, covariances Σk and  mixing coefficients πk, and evaluate the initial value of the log likelihood.

2.E step. Evaluate the responsibilities using the current parameter values

3.M step. Re-estimate the parameters using the current responsibilities.

4.Evaluate the log likelihood

lnp(X|π,μ,Σ)=Σnln{ΣkπkN(xnkk)}

 

posted @   东宫得臣  阅读(148)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列:基于图像分类模型对图像进行分类
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
阅读排行:
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 25岁的心里话
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现
点击右上角即可分享
微信分享提示