Principal Component Analysis ---- PRML读书笔记
To summarize, principal component analysis involves evaluating the mean x and the covariance matrix S
of the data set and then finding the M eigenvectors of S corresponding to the M largest eigenvalues. If we
plan to project our data onto the first M principal compents, then we only need to find the first M eigenvalues
and eigenvectors.
PCA can be defined as the orthogonal projection of the data onto a lower dimensional linear space, known as
the principal subspace, such that the variance of the projected data is maximized. Equivalently, it can be defined
as the linear projection that minimizes the average projection cost, defined as the mean squared distance between
the data points and their projections.
Consider a data set of observations {xn} where n = 1,...,N, and xn is a Euclidean variable with dimensionality D.
Our goal is to project the data onto a space having dimensionality M < D while maximizing the variance of the projected
data.
The general solution to the minimization of J for arbitrary D and arbitrary M < D is obtained by choosing the {ui} to be
eigenvectors of the covariance matrix given by Sui=λiui. where i=1,...,D, and as usual the eigenvectors {ui} are chosen to
be orthonormal.
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:基于图像分类模型对图像进行分类
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 25岁的心里话
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现