两个向量之间的欧式距离及radial-basis-functions(RBF)
template <class DataType1, class DataType2>
double EuclideanDistance(std::vector<DataType1> &inst1, std::vector<DataType2> &inst2) {
if(inst1.size() != inst2.size()) {
std::cout<<"the size of the vectors is not the same\n";
return -1;
}
std::vector<double> temp;
for(size_t i=0; i<inst1.size(); ++i) {
temp.push_back(pow(inst1.at(i)-inst2.at(i), 2.0));
}
double distance=accumulate(temp.begin(), temp.end(), 0.0);
distance=sqrt(distance);
return distance;
}
The radial-basis-functions(RBF) technique consists of choosing a function F that has the form
F(x)=Σwiφ(||x-xi||)
where {φ(||x-xi||)|i=1,2,...,N} is a set of N arbitrary (generally nonlinear) functions, known as
radial-basis functions, and ||•|| denotes a norm that is usually Euclidean.
Much of the theory developed on RBF networks builds on the Gaussian function, an important member
of the class of radial-basis functions. The Gaussian function may also be viewed as a kernel--hence the
designation of the two-stage procedure based on the Gaussian function as a kernel method.
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:基于图像分类模型对图像进行分类
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 25岁的心里话
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现