批量梯度下降(Batch gradient descent) C++

At each step the weight vector is moved in the direction of the greatest rate of decrease of the error function,

and so this approach is known as gradient descent(梯度下降法) or steepest descent(最速下降法).

Techniques that use the whole data set at once are called batch methods.

With the method of gradient descent used to perform the training, the advantages of batch learning

include the following:

1)accurate estimation of the gradient vector(i.e., the derivative of the cost function with respect to the weight vector w),

thereby guaranteeing, under simple conditions, convergence of the method of steepest descent to a local minimum;

2)parallalization of the learning process.

However, from a practical perspective, batch learning is rather demanding in terms of storage requirements.

#include <iostream>
#include <vector>
#include <cmath>
#include <cfloat>

/*批量梯度下降法*/
int main() {
    double datax[]={1,2,3,4,5};
    double datay[]={1,1,2,2,4};
    std::vector<double> v_datax,v_datay;

    for(size_t i=0;i<sizeof(datax)/sizeof(datax[0]);++i) {
        v_datax.push_back(datax[i]);
        v_datay.push_back(datay[i]);
    }

    double a=0,b=0;
    double J=0.0;

    for(std::vector<double>::iterator iterx=v_datax.begin(),itery=v_datay.begin();iterx!=v_datax.end(),itery!=v_datay.end();++iterx,++itery) {
        J+=(a+b*(*iterx)-*itery)*(a+b*(*iterx)-*itery);
    }
    J=J*0.5/v_datax.size();
                            
    while(true) {
        double grad0=0,grad1=0;
        for(std::vector<double>::iterator iterx=v_datax.begin(),itery=v_datay.begin();iterx!=v_datax.end(),itery!=v_datay.end();++iterx,++itery) {
            grad0+=(a+b*(*iterx)-*itery);
            grad1+=(a+b*(*iterx)-*itery)*(*iterx);
        }

        grad0=grad0/v_datax.size();
        grad1=grad1/v_datax.size();

        //0.03为学习率阿尔法
        a=a-0.03*grad0;
        b=b-0.03*grad1;
        double MSE=0;
        
        for(std::vector<double>::iterator iterx=v_datax.begin(),itery=v_datay.begin();iterx!=v_datax.end(),itery!=v_datay.end();++iterx,++itery) {
            MSE+=(a+b*(*iterx)-*itery)*(a+b*(*iterx)-*itery);
        }
        MSE=MSE*0.5/v_datax.size();
        
        if(std::abs(J-MSE)<0.0000001)
            break;
        J=MSE;
    }

    std::cout<<"批量梯度下降法得到的结果:"<<std::endl;
    std::cout<<"a = "<<a<<std::endl;
    std::cout<<"b = "<<b<<std::endl;

    return 0;
}

In a statistical context, batch learning may be viewed as a form of statistical inference. It is therefore well suited

for solving nonlinear regression problems.

posted @   东宫得臣  阅读(594)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列:基于图像分类模型对图像进行分类
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
阅读排行:
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 25岁的心里话
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现
点击右上角即可分享
微信分享提示