Projection Pursuit Regression----读书笔记
The central idea is to extract linear combinations of the inputs as derived features, and then model the target as a nonlinear function of these features. Assume we have an input vector X with p components, and a target Y. Let ωm, m=1,2,...,M, be unit p-vectors of unknown parameters. The projection pursuit regression(PPR) model has the form f(X)=Σgm(ωmTX). This is an additive model, but in the derived features Vm=ωmTX rather than the inputs themselves. The functions gm are unspecified and are estimated along with directions ωm using some flexible smoothing method. The scalar variable Vm=ωmTX is the projection of X onto the unit vector ωm, and we seek ωm so that the model fits well, hence the name "projection pursuit." As a result, the PPR model is most usefull for prediction, and not very usefull for producing an understandable model for the data. How do we fit a PPR model, given training data (xi, yi), i=1,2,...,N? We seek the approximate minimizers of the error function
Σi=1N [yi-Σm=1Mgm(ωmTxi)]2.
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:基于图像分类模型对图像进行分类
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 25岁的心里话
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现