k-means 聚类前的数据分析
原始数据
Say you are given a data set where each observed example has a set of features, but has nolabels. Labels are an essential ingredient to a supervised algorithm like Support Vector Machines, which learns a hypothesis function to predict labels given features. So we can't run supervised learning. What can we do?
One of the most straightforward tasks we can perform on a data set without labels is to find groups of data in our dataset which are similar to one another -- what we call clusters.
#!/usr/bin/python
import matplotlib.pyplot as plt
def readfile(filename):
datamat = []
with open(filename, 'r') as f:
for line in f.readlines():
linestrlist = line.strip().split('\t')
linelist = list(map(float, linestrlist))
datamat.append(linelist)
return datamat
if __name__ == "__main__":
datamat = []
datamat = readfile("C:\\kmeans.txt")
vectors_set = []
for val in enumerate(datamat):
vectors_set.append(val[1])
x_data = [v[0] for v in vectors_set]
y_data = [v[1] for v in vectors_set]
plt.plot(x_data, y_data, 'r*', label='Original data')
plt.legend()
plt.show()
K-means聚类时候,需要给定K的值,这个时候可以先画出图,大致判断一下。
分类:
机器学习笔记
, Python程序设计
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:基于图像分类模型对图像进行分类
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 25岁的心里话
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现