Java基础-继承
访问权限
Java 中有三个访问权限修饰符:private、protected 以及 public,如果不加访问修饰符,表示包级可见。
可以对类或类中的成员(字段和方法)加上访问修饰符。
- 类可见表示其它类可以用这个类创建实例对象。
- 成员可见表示其它类可以用这个类的实例对象访问到该成员;
protected 用于修饰成员,表示在继承体系中成员对于子类可见,但是这个访问修饰符对于类没有意义。
设计良好的模块会隐藏所有的实现细节,把它的 API 与它的实现清晰地隔离开来。模块之间只通过它们的 API 进行通信,一个模块不需要知道其他模块的内部工作情况,这个概念被称为信息隐藏或封装。因此访问权限应当尽可能地使每个类或者成员不被外界访问。
如果子类的方法重写了父类的方法,那么子类中该方法的访问级别不允许低于父类的访问级别。这是为了确保可以使用父类实例的地方都可以使用子类实例去代替,也就是确保满足里氏替换原则。
字段决不能是公有的,因为这么做的话就失去了对这个字段修改行为的控制,客户端可以对其随意修改。例如下面的例子中,AccessExample 拥有 id 公有字段,如果在某个时刻,我们想要使用 int 存储 id 字段,那么就需要修改所有的客户端代码。
public class AccessExample { public String id; }
可以使用公有的 getter 和 setter 方法来替换公有字段,这样的话就可以控制对字段的修改行为。
public class AccessExample { private int id; public String getId() { return id + ""; } public void setId(String id) { this.id = Integer.valueOf(id); } }
但是也有例外,如果是包级私有的类或者私有的嵌套类,那么直接暴露成员不会有特别大的影响。
public class AccessWithInnerClassExample { private class InnerClass { int x; } private InnerClass innerClass; public AccessWithInnerClassExample() { innerClass = new InnerClass(); } public int getValue() { return innerClass.x; // 直接访问 } }
抽象类与接口
抽象类
抽象类和抽象方法都使用 abstract 关键字进行声明。如果一个类中包含抽象方法,那么这个类必须声明为抽象类。
抽象类和普通类最大的区别是,抽象类不能被实例化,只能被继承。
抽象类和普通类最大的区别是,抽象类不能被实例化,只能被继承。
public abstract class AbstractClassExample { protected int x; private int y; public abstract void func1(); public void func2() { System.out.println("func2"); } }
public class AbstractExtendClassExample extends AbstractClassExample { @Override public void func1() { System.out.println("func1"); } }
// AbstractClassExample ac1 = new AbstractClassExample(); // 'AbstractClassExample' is abstract; cannot be instantiated AbstractClassExample ac2 = new AbstractExtendClassExample(); ac2.func1();
接口
接口是抽象类的延伸,在 Java 8 之前,它可以看成是一个完全抽象的类,也就是说它不能有任何的方法实现。
从 Java 8 开始,接口也可以拥有默认的方法实现,这是因为不支持默认方法的接口的维护成本太高了。在 Java 8 之前,如果一个接口想要添加新的方法,那么要修改所有实现了该接口的类,让它们都实现新增的方法。
接口的成员(字段 + 方法)默认都是 public 的,并且不允许定义为 private 或者 protected。从 Java 9 开始,允许将方法定义为 private,这样就能定义某些复用的代码又不会把方法暴露出去。
接口的字段默认都是 static 和 final 的。
public interface InterfacExample { void fun1(); default void func2(){ System.out.println("fun2"); } /** * 接口的成员(字段 + 方法)默认都是 public 的,并且不允许定义为 private 或者 protected。 * 从 Java 9 开始,允许将方法定义为 private,这样就能定义某些复用的代码又不会把方法暴露出去。 */ int x = 123; // int y; // Variable 'y' might not have been initialized public int z = 0; // Modifier 'public' is redundant for interface fields // private int k = 1; // Modifier 'private' not allowed here // protected int l = 0; // Modifier 'protected' not allowed here private void fun3(){ System.out.println("在接口里的私有方法要有方法体"); }; // Private methods in interfaces should have a body //private void fun4(); }
public class InterfaceImplementExample implements InterfacExample { @Override public void fun1() { System.out.println("fun1"); } public static void main(String[] args) { // InterfacExample ie1 = new InterfacExample(); // 'InterfacExample' is abstract; cannot be instantiated InterfaceImplementExample ie2 = new InterfaceImplementExample(); ie2.fun1(); ie2.func2(); System.out.println(InterfacExample.x); } }
比较
- 从设计层面上看,抽象类提供了一种 IS-A 关系,需要满足里式替换原则,即子类对象必须能够替换掉所有父类对象。而接口更像是一种 LIKE-A 关系,它只是提供一种方法实现契约,并不要求接口和实现接口的类具有 IS-A 关系。
- 从使用上来看,一个类可以实现多个接口,但是不能继承多个抽象类。
- 接口的字段只能是 static 和 final 类型的,而抽象类的字段没有这种限制。
- 接口的成员只能是 public 的,而抽象类的成员可以有多种访问权限。
使用选择
使用接口:
- 需要让不相关的类都实现一个方法,例如不相关的类都可以实现 Comparable 接口中的 compareTo() 方法;
- 需要使用多重继承。
使用抽象类:
- 需要在几个相关的类中共享代码。
- 需要能控制继承来的成员的访问权限,而不是都为 public。
- 需要继承非静态和非常量字段。
在很多情况下,接口优先于抽象类。因为接口没有抽象类严格的类层次结构要求,可以灵活地为一个类添加行为。并且从 Java 8 开始,接口也可以有默认的方法实现,使得修改接口的成本也变的很低。
Super
- 访问父类的构造函数:可以使用 super() 函数访问父类的构造函数,从而委托父类完成一些初始化的工作。应该注意到,子类一定会调用父类的构造函数来完成初始化工作,一般是调用父类的默认构造函数,如果子类需要调用父类其它构造函数,那么就可以使用 super() 函数。
- 访问父类的成员:如果子类重写了父类的某个方法,可以通过使用 super 关键字来引用父类的方法实现。
public class SuperExample { protected int x; protected int y; public SuperExample(int x, int y){ this.x = x; this.y = y; } public void func() { System.out.println("SuperExample.func()"); } }
public class SuperExtendExample extends SuperExample { private int z; public SuperExtendExample(int x, int y, int z) { super(x, y); this.z = z; } @Override public void func(){ super.func(); System.out.println("SuperExtendExample.fun()"); } public static void main(String[] args) { SuperExtendExample e = new SuperExtendExample(1,2,3); e.func(); } }
重写与重载
重写(Override)
存在于继承体系中,指子类实现了一个与父类在方法声明上完全相同的一个方法。
为了满足里式替换原则,重写有以下三个限制:
- 子类方法的访问权限必须大于等于父类方法;
- 子类方法的返回类型必须是父类方法返回类型或为其子类型。
- 子类方法抛出的异常类型必须是父类抛出异常类型或为其子类型。
使用 @Override 注解,可以让编译器帮忙检查是否满足上面的三个限制条件。
下面的示例中,SubClass 为 SuperClass 的子类,SubClass 重写了 SuperClass 的 func() 方法。其中:
- 子类方法访问权限为 public,大于父类的 protected。
- 子类的返回类型为 ArrayList<Integer>,是父类返回类型 List<Integer> 的子类。
- 子类抛出的异常类型为 Exception,是父类抛出异常 Throwable 的子类。
- 子类重写方法使用 @Override 注解,从而让编译器自动检查是否满足限制条件。
class SuperClass { protected List<Integer> func() throws Throwable { return new ArrayList<>(); } } class SubClass extends SuperClass { @Override public ArrayList<Integer> func() throws Exception { return new ArrayList<>(); } }
在调用一个方法时,先从本类中查找看是否有对应的方法,如果没有再到父类中查看,看是否从父类继承来。否则就要对参数进行转型,转成父类之后看是否有对应的方法。总的来说,方法调用的优先级为:
- this.func(this)
- super.func(this)
- this.func(super)
- super.func(super)
class A { public void show(A obj) { System.out.println("A.show(A)"); } public void show(C obj) { System.out.println("A.show(C)"); } } class B extends A { @Override public void show(A obj) { System.out.println("B.show(A)"); } } class C extends B { } class D extends C { }
public static void main(String[] args) { A a = new A(); B b = new B(); C c = new C(); D d = new D(); // 在 A 中存在 show(A obj),直接调用 a.show(a); // A.show(A) // 在 A 中不存在 show(B obj),将 B 转型成其父类 A a.show(b); // A.show(A) // 在 B 中存在从 A 继承来的 show(C obj),直接调用 b.show(c); // A.show(C) // 在 B 中不存在 show(D obj),但是存在从 A 继承来的 show(C obj),将 D 转型成其父类 C b.show(d); // A.show(C) // 引用的还是 B 对象,所以 ba 和 b 的调用结果一样 A ba = new B(); ba.show(c); // A.show(C) ba.show(d); // A.show(C) }
重载(Overload)
存在于同一个类中,指一个方法与已经存在的方法名称上相同,但是参数类型、个数、顺序至少有一个不同。
应该注意的是,返回值不同,其它都相同不算是重载。
class OverloadingExample { public void show(int x) { System.out.println(x); } public void show(int x, String y) { System.out.println(x + " " + y); } }
public static void main(String[] args) { OverloadingExample example = new OverloadingExample(); example.show(1); example.show(1, "2"); }