java——递归(动态规划,回溯)

最近刷面试题经常刷到递归方面的算法,一直以为都是递归,后来发现竟然都有具体的叫法,所以写了这篇博客来牢记以下

1. 五大常用算法

(1) 分治算法

把一个复杂的问题分成两个或多个相同或者相似的子问题,然后不断地细分,直到最后的子问题可以很简单地求解出来,原问题的解就是自问题的合并。比如常见的快速排序算法和归并算法

分治法的核心思想就是把大的难解的问题不断分割,分而治之。

(2) 动态规划

类似于分治法,将带求解的问题分化成几个小问题,每个小问题的解会影响原问题的解。

先求每个子问题的局部解,然后通过决策保留那些可能达到最优解的局部解

能够分解成若干子问题,且子问题之间有交叉

(3) 回溯算法

类似于一个枚举的过程,其实也是一个建树的过程,是树的深度优先搜索。

在搜索尝试过程中,发现当前节点已经不能满足求解条件时,就返回其父节点,继续尝试别的路径

(4) 分支界限法

类似于回溯算法,不过不是深度优先搜索,而是广度优先搜索,一般是用到queue(先进先出)来对每一个节点进行判断。

(5) 贪心算法

在问题求解时,总是找到局部最优解,而不是整体上最优。

贪心算法的前提:局部最优策略能最终产生全局的最优解

 

2. 递归(个人感觉这个学会了,算法只是如何调用递归)

先上一个最简单的递归代码,斐波那契数列

public class Fibo {
    public int[] array = new int[100];{
        array[0]=0;
        array[1]=1;
        array[2]=1;}
    
    public int Fibonacci(int n){
        if(n==1||n==2){
            return 1;
        }else{
            return this.array[n]=Fibonacci(n-1)+Fibonacci(n-2);
        }
        
    }

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        Fibo fb = new Fibo();
        System.out.println(fb.Fibonacci(3));

    }

}

当然,也可以来个伪递归,就是建立一个数组,把答案先预存起来,然后直接返回结果。剑指offer上很多直接递归是通不过的,必须要伪递归才可以

再来个青蛙跳台阶的代码,题目同样是剑指offer上的

//一只青蛙一次可以跳上1级台阶,也可以跳上2级。
//求该青蛙跳上一个n级的台阶总共有多少种跳法

public class JumpFloor {
    
    public int Jump(int target){
        if(target==0){
            return 0;
        }else if(target==1){
            return 1;
        }else if(target==2){
            return 2;
        }else{
            int[] array = new int[target+1];
            array[0]=0;
            array[1]=1;
            array[2]=2;
            for(int i=3;i<array.length;i++){
                array[i]=array[i-1]+array[i-2];
            }
            return array[target];
        }
        
    }
    
    //一只青蛙一次可以跳上1级台阶,也可以跳上2级,跳3个,4个......n-1个。
    //求该青蛙跳上一个n级的台阶总共有多少种跳法
    public int JumpII(int target){
        if(target==0){
            return 0;
        }else if(target==1){
            return 1;
        }else if(target==2){
            return 2;
        }else{
            int[] array = new int[target+1];
            array[0]=0;
            array[1]=1;
            array[2]=2;
            int sum = 3;
            for(int i=3;i<array.length;i++){
                array[i]=sum+1;
                sum = sum+array[i];
            }
            return array[target];
        }
        
    }
    


    public static void main(String[] args) {
        // TODO Auto-generated method stub
        JumpFloor jf = new JumpFloor();
        System.out.println(jf.Jump(3));
        System.out.println(jf.JumpII(3));

    }

}

这里也是用伪递归来实现的

 

3. 递归的本质

其实递归的本质就是找到前后的联系,找到递归的公式

例如    F(n) = F(n-1) + F(n-2) 等等

 递归的一般情况是

(1). if(满足递归结束条件),返回值

(2). else,继续递归

 

4. 回溯的本质,其实是在递归基础上进行了改进

(1). if(不满足继续递归查找的条件,通常是界限判断),返回

(2). if(满足查找条件),记录下来,继续往下

(3). 加入这个节点,更新条件和值

(4). 递归左边

(5).递归右边

(6). 删除这个节点(回溯)

来个例子,例子是中兴的一道笔试题,我对其进行了改进。其实所有这类的能量补给,血条补给都是相同的解法。

import java.util.ArrayList;

//输入
//补给站个数,[补给站距离],[补给站能量],目的地距离(总共需要能量),初始能量 //3, [5, 7, 10], [2, 3, 5], 15, 5 //5, [10, 20, 22, 23, 26], [10, 2, 5, 1, 1], 30, 10
//输出
//所有可以到达的方案,到达不了返回-1
import java.util.Arrays; import java.util.Scanner; public class PowerGain { private ArrayList<ArrayList<Integer>> listAll = new ArrayList<ArrayList<Integer>>(); private ArrayList<Integer> list = new ArrayList<Integer>(); public ArrayList<ArrayList<Integer>> minNumber(int n, int[] distince, int[] judce, int left, int right, int destination, int power){ //System.out.println(left+" "+destination+" "+power); if( left>right || power<=0){ return listAll; } //if(power>=distince[left]){ list.add(left); //} if(power>=destination){ listAll.add(new ArrayList<Integer>(list)); //return listAll; } int newleft = left+1; //不喝继续前行,喝了继续前行 minNumber(n, distince, judce, newleft, n, destination-distince[left], power-distince[left]); minNumber(n, distince, judce, newleft, n, destination-distince[left], power-distince[left]+judce[left]); list.remove(list.size()-1); return listAll; } public void outPrint(ArrayList<ArrayList<Integer>> tempAll){ if(tempAll.size()==0){ System.out.println(-1); return; } for(int i=0;i<tempAll.size();i++){ ArrayList<Integer> temp = tempAll.get(i); for(int j=1;j<temp.size();j++){ System.out.print(temp.get(j)); if(j!=temp.size()-1){ System.out.print(" "); } } System.out.println(); } } public static void main(String[] args) { // TODO Auto-generated method stub Scanner input = new Scanner(System.in); String st = input.nextLine(); String[] sarray = st.split(", "); int n = Integer.parseInt(sarray[0]); int[] distince = new int[n+1]; int[] judce = new int[n+1]; int index = 1; //sarray下标 for(int i=0;i<n;i++){ if(i==0){ distince[i] = Integer.parseInt(sarray[index].substring(1)); judce[i] = Integer.parseInt(sarray[index+n].substring(1)); }else if(i==n-1){ distince[i] = Integer.parseInt(sarray[index].substring(0, sarray[index].length()-1)); judce[i] = Integer.parseInt(sarray[index+n].substring(0, sarray[index+n].length()-1)); }else{ distince[i] = Integer.parseInt(sarray[index]); judce[i] = Integer.parseInt(sarray[index+n]); } index++; } index = 2*n+1; int destination = Integer.parseInt(sarray[index]); int power = Integer.parseInt(sarray[index+1]); //长度分段 judce[n] = 0; distince[n]=destination-distince[n-1]; for(int i=n-1;i>0;i--){ distince[i]=distince[i]-distince[i-1]; } PowerGain m = new PowerGain(){}; ArrayList<ArrayList<Integer>> result = m.minNumber(n, distince, judce, 0, n, destination, power); m.outPrint(result); } }

 

posted @ 2017-08-30 11:11  东木刀纹  阅读(2328)  评论(0编辑  收藏  举报