Python提升程序性能的七个手段

1. 使用局部变量

  尽量使用局部变量代替全局变量: 便于维护, 也可以避免不必要的资源浪费

  使用局部变量替换模块名字空间的变量, 例如: ls = os.linesep. 一方面给可以提高程序性能, 局部变量查找速度更快; 另一方面可以采用简短标识符代替冗长的模块变量, 提高可读性.

2. 减少函数调用次数

  对象类型判断时, 采用欧冠isinstance()最优, 采用对象类型身份(id())次之, 采用对象值(type())最次之.

#判断变量num是否为整数类型
type(num) == type(0) #调用三次函数
type(num) is type(0) #身份比较
isinstance(num,(int)) #调用一次函数

  不要将重复操作的内容作为参数放到循环条件中, 避免重复运算.

#每次循环都需要重新执行len(a)
while i < len(a):
   statement
#len(a)仅执行一次
m = len(a)
while i < m:
   statement

  如果使用某块X的某一个函数或者对象Y, 应该直接使用from X import Y进行引用, 而不是import X; X.Y进行使用. 这样在使用Y时, 可以减少一次查询(解释器不必首要找到X模块, 然后再X模块的字典中查找Y).

3. 采用映射替代条件查询

  映射(比如dict等)的搜索速度远快于条件语句(if等).. python中也没有select-case语句.

#if查找
if a == 1:
   b = 10
elif a == 2:
   b = 20
...
 
#dict查找,性能更优
d = {1:10,2:20,...}
b = d[a]

4. 直接迭代序列元素

  对序列(str, list, tuple等), 直接迭代序列元素, 比迭代元素的索引速度要快.

a = [1,2,3]
#迭代元素
for item in a:
   print(item)
 
#迭代索引
for i in range(len(a)):
  print(a[i])

5. 采用生成器表达式替代列表解析

  列表解析(list comprehension), 会产生整个列表, 对大量数据的迭代会产生负面效应.

  而生成器表达式则不会, 其不会真正的创建一个列表, 而是返回一个生成器, 在需要时产生一个值(延迟计算), 对内存更加友好.

#计算文件f的非空字符个数
#生成器表达式
l = sum([len(word) for line in f for word in line.split()])
 
#列表解析
l = sum(len(word) for line in f for word in line.split())

6. 先编译后调用

  使用eval(), exec()函数执行代码时, 最好调用代码对象(提前通过compile()函数编译成字节码,)而不是直接调用str, 可以避免多次执行重复编译过程, 提高程序性能.

  正则表达式模式匹配也类似, 也最好先将正则表达式模式编译成regex对象(通过re.complie

()函数), 然后再执行比较和匹配

7. 模块编程习惯

  模块中的最高级Python语句(无缩进的代码)会在模块导入(import)时执行(不论其是否真的有必要执行). 因此, 应尽量将模块所有的功能代码放到函数中, 包括主程序相关的代码也可以放到main()函数中, 主程序本身调用main()函数.

  可以在模块的main()函数中书写测试的代码. 在主程序中, 检测name的值, 如果为"main"(表示模块是被直接执行, 则调用main()函数进行测试; 如果为模块名字(表示模块是被调用),则不进行测试.

posted @ 2019-02-16 17:38  唯你如我心  阅读(932)  评论(0编辑  收藏  举报