2^n的第一位数字 soj 3848 mathprac

    Time Limit: 3000 MS    Memory Limit: 65536 K



                                                      mathprac

Description



One lovely afternoon, Bessie's friend Heidi was helping Bessie
review for her upcoming math exam.

Heidi presents two integers A (0 <= A <= 45) and B (1 <= B <= 9)
to Bessie who must respond with an integer E in the range 1..62.
E is the smallest integer in that range that is strictly greater
than A and also has B as the first digit of 2 raised to the E-th
power. If there is no answer, Bessie responds with 0.

Help Bessie correctly answer all of Heidi's questions by calculating
her responses.

By way of example, consider A=1 and B=6. Bessie might generate a table
like this:
         E         2^E    First digit of 2^E
         2          4            4
         3          8            8
         4         16            1
         5         32            3
         6         64            6      <-- matches B

Thus, E=6 is the proper answer.

NOTE: The value of 2^44 does not fit in a normal 32-bit integer.

Input



* Line 1: Two space-separated integers: A and B

Output



* Line 1: A single integer E calculated as above

Sample Input



1 6

Sample Output



6

题意:

就是求2^n的第一位数字;

由于2^n=t*10^k,那么也就是求t的第一位。

log10(2^n)=n*log10(2)

                =log10(t*10^k)

                =log10(t)+k   k为整数

求出n*log10(2)减去k即可求得log10(t),然后求出10^log10(t),对其取整,即为所求。

#include<iostream>
#include
<math.h>
using namespace std;

int main(void)
{
int A,B;
while(scanf("%d%d",&A,&B)==2)
{
int i;
double d;
int digit;
int p;
for(i=A+1;i<=62;i++)
{
d
=i*log10(2.0);
p
=(int)(d);
digit
=(int)pow(10.0,d-p);
if(digit==B)
{
printf(
"%d\n",i);
break;
}
}
if(i==63)
printf(
"0\n");
}
return 0;
}



posted @ 2011-04-11 21:59  Matrix海子  阅读(737)  评论(0编辑  收藏  举报