案例1
| import akshare as ak |
| import pandas as pd |
| import numpy as np |
| import os |
| |
| """ |
| 获取A股所有股票的代码 |
| 使用stock_info_a_code_name(),反馈数据格式详细参见akshare官网 |
| """ |
| StockList=ak.stock_info_a_code_name() |
| |
| |
| |
| |
| |
| for i in range(0,len(StockList)): |
| temp=StockList.iloc[i,0] |
| if temp[0]=="6": |
| temp="sh"+temp |
| if temp[0]=="0": |
| temp="sz"+temp |
| if temp[0]=="3": |
| temp="sz"+temp |
| StockList.iloc[i,0]=temp |
| |
| |
| |
| if os.path.exists("C://work//todo//stockList.txt"): |
| os.remove("C://work//todo//stockList.txt") |
| StockList.to_csv("C://work//todo//stockList.txt",sep="\t",index=False,header=True) |
| |
| |
| """ |
| 下一步,根据原有的股票代码数据,读取历史数据 |
| "stock_zh_a_hist" # A 股日频率数据-东方财富 |
| "stock_zh_ah_daily" # 获取 A+H 股历史行情数据(日频) |
| "stock_zh_a_daily" # 获取 A 股历史行情数据(日频) |
| "stock_zh_kcb_daily" # 获取科创板历史行情数据(日频) |
| "option_sina_cffex_hs300_daily" # 沪深300期权历史行情-日频 |
| "option_sina_sse_daily" # 上交所期权日频数据 |
| """ |
查看详情
| pip install akshare --upgrade |
| UseWlarning: 为了支持更多特性,请将 Pandas 升级到 2.1.0及以上版本 |
| pip uninstall pandas |
| pip install pandas==1.1.0 |
| Pandas requires version '3.0.10' or newer of 'openpyxl' (version '3.0.9' currently installed) |
| pip install openpyxl==3.0.10 |
- 查看

案例2
| |
| import pandas as pd |
| from pandas import Series, DataFrame |
| import akshare as ak |
| import mplfinance as mf |
| import matplotlib.pyplot as plot |
| from statsmodels.graphics.tsaplots import plot_acf, plot_pacf |
| |
| from statsmodels.tsa.arima_model import ARIMA |
| from pandas.plotting import scatter_matrix |
| |
| |
| stock_szse_area_summary_df = ak.stock_szse_area_summary(date="202312") |
| print(stock_szse_area_summary_df) |
| |
| stock_df = ak.stock_zh_a_hist(symbol='600729', period="daily", |
| start_date='20230101', end_date='20240101', adjust="qfq") |
| print(stock_df.describe()) |
| print(stock_df) |
| from pandas import Series,DataFrame |
| WuLiangYe=DataFrame(stock_df) |
| print( "五粮液") |
| print( WuLiangYe) |
| |
| WuLiangYe['日期'] = pd.to_datetime(WuLiangYe['日期']) |
| print( WuLiangYe.info()) |
| |
| dict = { |
| '开盘': 'Open', |
| '收盘': 'Close', |
| '最高': 'High', |
| '最低': 'Low', |
| '涨跌幅': 'Profit', |
| '成交量': 'Volume', |
| '成交额': 'Amount', |
| '日期': 'Date' |
| } |
| |
| WuLiangYe.rename(columns=dict,inplace=True) |
| WuLiangYe.set_index(['Date'],inplace=True) |
| print( WuLiangYe.info()) |
| mc = mf.make_marketcolors( |
| up="red", |
| down="green", |
| edge="gray", |
| volume="pink", |
| wick="gray" |
| ) |
| |
| style = mf.make_mpf_style(base_mpl_style="ggplot", marketcolors=mc) |
| mf.plot( |
| data=WuLiangYe, |
| type="candle", |
| title="KlINE-days", |
| ylabel="price", |
| style=style, |
| volume=True |
| ) |
| |
| |
| WuLiangYeM = WuLiangYe.resample('M').first() |
| mc = mf.make_marketcolors( |
| up="red", |
| down="green", |
| edge="gray", |
| volume="pink", |
| wick="gray" |
| ) |
| |
| style = mf.make_mpf_style(base_mpl_style="ggplot", marketcolors=mc) |
| mf.plot( |
| data=WuLiangYeM, |
| type="candle", |
| title="KLINE-months", |
| ylabel="price", |
| style=style, |
| volume=True |
| ) |
| mf.show() |
| |
| """ |
| 从日K线和月k线可以看出,2020年五粮液的股价在1月到3月是呈下降的趋势这是因为2020年受海外新冠疫情的影响,股市风险情绪上升所导致的,而在四月份恐慌情绪过后,五粮液的表现非常强劲,总体呈上升趋势,反弹力度大,回调时间短 |
| 六月成交量为全年最高,该月当时券商拉升带动大盘,市场追涨情绪明显,这应该是成交量高的主要原因 |
| 评论 |
| 计算五粮液2020年总收益率 |
| """ |
| |
| |
| |
| |
| |
| |
| |
| total_profit=((WuLiangYe['Close'][-1]-WuLiangYe['Close'][0])/WuLiangYe['Close'][0])*100 |
| total_profit=total_profit.round(2) |
| print('五粮液2023年股价上涨了{}%'.format(total_profit)) |
| |
| |
| WuLiangYe.Profit.plot.hist(bins=40) |
| |
| |
| mf.show() |
| """ |
| 寻找金死叉点并分析收益情况 |
| 当股在一年中涨跌天数均匀时,找到买入点和卖出点成为了至关重要的因素,下面通过绘制2020年五粮液股5日线和30日线,寻找其对应的金叉点和死叉点 |
| ·金叉是一个股市中常用的技术名词。是指是f由1根时间短的均线在下方向上穿越时间长一点的均线,然后这2根均线方向均朝上,则此均线组合为“均线金叉”,反之为“均线死叉”,金叉趋向买入,死叉趋向卖出 |
| """ |
| |
| M5=WuLiangYe['Close'].rolling(5).mean() |
| M5[29:].plot(color='red') |
| M30=WuLiangYe['Close'].rolling(30).mean() |
| M30[29:].plot(color='pink') |
| print( "30[29:]是什么") |
| print(M30[29:]) |
| s1=M5[29:]<M30[29:] |
| s2=M5[29:]>M30[29:] |
| |
| |
| WuLiangYe['d_goal']=~(s1|s2.shift(1)) |
| date_goal=WuLiangYe[WuLiangYe['d_goal']==True].index |
| |
| print( "date_goal是什么") |
| print(date_goal) |
| |
| |
| WuLiangYe['d_ex']=s1&s2.shift(1) |
| date_ex=WuLiangYe[WuLiangYe['d_ex']==True].index |
| |
| print( "找出银叉点") |
| print(date_ex) |
| |
| |
| |
| x1=pd.Series(1,date_goal) |
| x2=pd.Series(0,date_ex) |
| x=x1.append(x2) |
| x=x.sort_index() |
| print("#生成一个Series,将金死叉点合并,金叉values=1,死叉values=0") |
| print(x ) |
| |
| first_money = 1000000 |
| money = first_money |
| hold = 0 |
| for i in range(0, len(x)): |
| if x[i] == 1: |
| time = x.index[i] |
| p = WuLiangYe.loc[time]['Open'] |
| hand = p * 100 |
| hand_count = money // hand |
| hold = hand_count * 100 |
| money -= hold * p |
| else: |
| deat_time = x.index[i] |
| p_death = WuLiangYe.loc[deat_time]['Open'] |
| money += p_death * hold |
| hold = 0 |
| last_money = hold * WuLiangYe['Close'][-1] |
| l = int(money + last_money - first_money) / first_money |
| print("按照金叉购买的收益率" ,l) |
| |
| |
| print(WuLiangYe[29:]['Profit'].sum()) |
| |
| """ |
| 结论 |
| 如上述我们发现采用金叉买入死叉卖出的方法,其收益率约为81.07%。而我们计算得到从2020-02-19开始五粮液股价上涨了93.54%,我们通过MACD金叉死叉去买入卖出反而赚的少了。可见在股市,金死叉策略只是一个机械的操作方案,它并不保证我们能最大化我们的收益,因此在股票实战中,我们仍需要通过更多的分析去选取合适的买入点和卖出点。 |
| """ |
查看详情
| UserWarning: A NumPy version >=1.16.5 and <1.23.0 is required for this version of SciPy (detected version 1.26.3 |
| warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}" |
| Traceback (most recent call last): |
| File "C:\work\PythonProject\demo1\day5\xxx.py", line 7, in <module> |
| from statsmodels.graphics.tsaplots import plot_acf,plot_pacf |
| File "C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\graphics\tsaplots.py", line 9, in <module> |
| from statsmodels.tsa.stattools import acf, pacf |
| File "C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\stattools.py", line 16, in <module> |
| from statsmodels.regression.linear_model import OLS, yule_walker |
| File "C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\regression\__init__.py", line 1, in <module> |
| from .linear_model import yule_walker |
| File "C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\regression\linear_model.py", line 46, in <module> |
| import statsmodels.base.model as base |
| File "C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\base\model.py", line 16, in <module> |
| from statsmodels.tools.numdiff import approx_fprime |
| File "C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tools\numdiff.py", line 51, in <module> |
| EPS = np.MachAr().eps |
| File "C:\ProgramData\Anaconda3\lib\site-packages\numpy\__init__.py", line 362, in __getattr__ |
| raise AttributeError("module {!r} has no attribute " |
| AttributeError: module 'numpy' has no attribute 'MachAr' |
| pip install numpy==1.20.0 |
| Traceback (most recent call last): |
| File "C:\ProgramData\Anaconda3\lib\site-packages\pandas\__init__.py", line 50, in <module> |
| from pandas.compat import ( |
| File "C:\ProgramData\Anaconda3\lib\site-packages\pandas\compat\__init__.py", line 26, in <module> |
| from pandas.compat.numpy import is_numpy_dev |
| File "C:\ProgramData\Anaconda3\lib\site-packages\pandas\compat\numpy\__init__.py", line 20, in <module> |
| raise ImportError( |
| ImportError: this version of pandas is incompatible with numpy < 1.22.4 |
| your numpy version is 1.20.0. |
| Please upgrade numpy to >= 1.22.4 to use this pandas version |
| |
| The above exception was the direct cause of the following exception: |
| |
| Traceback (most recent call last): |
| File "C:\work\PythonProject\demo1\day5\xxx.py", line 2, in <module> |
| import pandas as pd |
| File "C:\ProgramData\Anaconda3\lib\site-packages\pandas\__init__.py", line 55, in <module> |
| raise ImportError( |
| ImportError: C extension: None not built. If you want to import pandas from the source directory, you may need to run |
| pip install numpy==1.22.4 |
| ImportError: cannot import name 'Int64Index' from 'pandas' |
| pip uninstall pandas |
| pip install pandas==1.3 |
| UserWarning: 为了支持更多特性,请将 Pandas 升级到 2.1.0 及以上版本! |
| warnings.warn( |
| 序号 地区 总交易额 占市场 股票交易额 基金交易额 债券交易额 |
| 0 1 上海 5.286822e+12 17.338 2.992193e+12 1.975306e+11 2.096570e+12 |
| 1 2 深圳 4.400932e+12 14.433 2.224285e+12 1.737308e+11 2.002532e+12 |
| 2 3 北京 3.166373e+12 10.384 1.604361e+12 1.535401e+11 1.408393e+12 |
| 3 4 浙江 2.290859e+12 7.513 1.742846e+12 4.721593e+10 5.007972e+11 |
| 4 5 江苏 2.207614e+12 7.240 1.422765e+12 7.104161e+10 7.138068e+11 |
| 5 6 广州 1.322847e+12 4.338 6.287197e+11 4.877917e+10 6.450713e+11 |
| 6 7 福建 1.136743e+12 3.728 6.699251e+11 2.576655e+10 4.410518e+11 |
| 7 8 境外地区 1.107133e+12 3.631 1.103059e+12 4.074297e+09 0.000000e+00 |
| 8 9 广东 1.021030e+12 3.348 7.148823e+11 1.622570e+10 2.899221e+11 |
| 9 10 湖北 9.383528e+11 3.077 4.659381e+11 1.321760e+10 4.591970e+11 |
| 10 11 西藏 9.230503e+11 3.027 7.346356e+11 2.205791e+10 1.663568e+11 |
| 11 12 四川 9.133173e+11 2.995 5.931431e+11 1.969206e+10 3.002686e+11 |
| 12 13 山东 8.364922e+11 2.743 5.409757e+11 2.417572e+10 2.713408e+11 |
| 13 14 湖南 5.241884e+11 1.719 3.548191e+11 4.078475e+10 1.285845e+11 |
| 14 15 安徽 4.527903e+11 1.485 2.892922e+11 5.397178e+09 1.581010e+11 |
| 15 16 陕西 4.264901e+11 1.399 2.388457e+11 4.452894e+09 1.831914e+11 |
| 16 17 江西 4.242438e+11 1.391 2.602215e+11 3.511622e+09 1.605107e+11 |
| 17 18 河南 4.109226e+11 1.348 2.973818e+11 7.090634e+09 1.064501e+11 |
| 18 19 辽宁 3.408091e+11 1.118 2.133040e+11 4.173938e+09 1.233311e+11 |
| 19 20 重庆 3.241324e+11 1.063 2.213131e+11 4.530836e+09 9.828847e+10 |
| 20 21 天津 3.064202e+11 1.005 1.357469e+11 4.197615e+09 1.664757e+11 |
| 21 22 河北 2.777442e+11 0.911 1.797245e+11 6.568652e+09 9.145102e+10 |
| 22 23 吉林 2.319529e+11 0.761 8.654197e+10 3.307861e+09 1.421030e+11 |
| 23 24 山西 2.165004e+11 0.710 1.249760e+11 2.708641e+09 8.881575e+10 |
| 24 25 广西 2.011458e+11 0.660 1.319309e+11 2.249863e+09 6.696508e+10 |
| 25 26 黑龙江 1.500966e+11 0.492 9.528036e+10 2.456394e+09 5.235989e+10 |
| 26 27 贵州 1.491735e+11 0.489 7.222632e+10 1.602498e+09 7.534470e+10 |
| 27 28 云南 1.392529e+11 0.457 8.440227e+10 1.996541e+09 5.285409e+10 |
| 28 29 新疆 8.736739e+10 0.287 6.452827e+10 1.119132e+09 2.171999e+10 |
| 29 30 内蒙古 8.632613e+10 0.283 4.379208e+10 7.241238e+08 4.180992e+10 |
| 30 31 海南 7.041083e+10 0.231 5.000668e+10 1.052923e+09 1.935122e+10 |
| 31 32 甘肃 6.279017e+10 0.206 4.802690e+10 6.601270e+08 1.410314e+10 |
| 32 33 宁夏 4.611795e+10 0.151 3.611200e+10 7.105359e+08 9.295411e+09 |
| 33 34 青海 1.176249e+10 0.039 9.355787e+09 1.115216e+08 2.295182e+09 |
| 开盘 收盘 最高 ... 涨跌幅 涨跌额 换手率 |
| count 242.000000 242.000000 242.000000 ... 242.000000 242.000000 242.000000 |
| mean 28.793760 28.822149 29.283512 ... 0.109380 0.021612 0.617066 |
| std 3.598273 3.570822 3.634784 ... 2.226286 0.631399 0.397641 |
| min 22.020000 22.080000 22.390000 ... -9.780000 -2.900000 0.200000 |
| 25% 25.752500 25.825000 26.202500 ... -1.035000 -0.297500 0.380000 |
| 50% 28.675000 28.630000 29.220000 ... -0.205000 -0.055000 0.490000 |
| 75% 31.750000 31.707500 32.220000 ... 0.832500 0.220000 0.707500 |
| max 35.600000 35.810000 36.470000 ... 10.320000 2.850000 2.630000 |
| |
| [8 rows x 10 columns] |
| 日期 开盘 收盘 最高 ... 振幅 涨跌幅 涨跌额 换手率 |
| 0 2023-01-03 22.97 22.08 22.99 ... 4.09 -3.87 -0.89 1.37 |
| 1 2023-01-04 22.12 22.10 22.39 ... 2.13 0.09 0.02 0.95 |
| 2 2023-01-05 22.02 22.31 22.82 ... 4.43 0.95 0.21 1.03 |
| 3 2023-01-06 22.28 22.47 22.66 ... 4.03 0.72 0.16 1.09 |
| 4 2023-01-09 22.24 22.18 22.48 ... 1.96 -1.29 -0.29 0.68 |
| .. ... ... ... ... ... ... ... ... ... |
| 237 2023-12-25 27.80 27.40 27.92 ... 3.83 -1.90 -0.53 0.70 |
| 238 2023-12-26 27.48 26.69 27.62 ... 4.60 -2.59 -0.71 0.64 |
| 239 2023-12-27 26.42 26.56 26.76 ... 3.30 -0.49 -0.13 0.77 |
| 240 2023-12-28 26.28 26.96 27.04 ... 2.94 1.51 0.40 0.60 |
| 241 2023-12-29 26.95 28.20 28.27 ... 5.53 4.60 1.24 0.76 |
| |
| [242 rows x 11 columns] |
| 五粮液 |
| 日期 开盘 收盘 最高 ... 振幅 涨跌幅 涨跌额 换手率 |
| 0 2023-01-03 22.97 22.08 22.99 ... 4.09 -3.87 -0.89 1.37 |
| 1 2023-01-04 22.12 22.10 22.39 ... 2.13 0.09 0.02 0.95 |
| 2 2023-01-05 22.02 22.31 22.82 ... 4.43 0.95 0.21 1.03 |
| 3 2023-01-06 22.28 22.47 22.66 ... 4.03 0.72 0.16 1.09 |
| 4 2023-01-09 22.24 22.18 22.48 ... 1.96 -1.29 -0.29 0.68 |
| .. ... ... ... ... ... ... ... ... ... |
| 237 2023-12-25 27.80 27.40 27.92 ... 3.83 -1.90 -0.53 0.70 |
| 238 2023-12-26 27.48 26.69 27.62 ... 4.60 -2.59 -0.71 0.64 |
| 239 2023-12-27 26.42 26.56 26.76 ... 3.30 -0.49 -0.13 0.77 |
| 240 2023-12-28 26.28 26.96 27.04 ... 2.94 1.51 0.40 0.60 |
| 241 2023-12-29 26.95 28.20 28.27 ... 5.53 4.60 1.24 0.76 |
| |
| [242 rows x 11 columns] |
| <class 'pandas.core.frame.DataFrame'> |
| RangeIndex: 242 entries, 0 to 241 |
| Data columns (total 11 columns): |
| |
| --- ------ -------------- ----- |
| 0 日期 242 non-null datetime64[ns] |
| 1 开盘 242 non-null float64 |
| 2 收盘 242 non-null float64 |
| 3 最高 242 non-null float64 |
| 4 最低 242 non-null float64 |
| 5 成交量 242 non-null int64 |
| 6 成交额 242 non-null float64 |
| 7 振幅 242 non-null float64 |
| 8 涨跌幅 242 non-null float64 |
| 9 涨跌额 242 non-null float64 |
| 10 换手率 242 non-null float64 |
| dtypes: datetime64[ns](1), float64(9), int64(1) |
| memory usage: 20.9 KB |
| None |
| <class 'pandas.core.frame.DataFrame'> |
| DatetimeIndex: 242 entries, 2023-01-03 to 2023-12-29 |
| Data columns (total 10 columns): |
| |
| --- ------ -------------- ----- |
| 0 Open 242 non-null float64 |
| 1 Close 242 non-null float64 |
| 2 High 242 non-null float64 |
| 3 Low 242 non-null float64 |
| 4 Volume 242 non-null int64 |
| 5 Amount 242 non-null float64 |
| 6 振幅 242 non-null float64 |
| 7 Profit 242 non-null float64 |
| 8 涨跌额 242 non-null float64 |
| 9 换手率 242 non-null float64 |
| dtypes: float64(9), int64(1) |
| memory usage: 20.8 KB |
| None |
| 五粮液2023年股价上涨了27.72% |
| 30[29:]是什么 |
| Date |
| 2023-02-20 23.464667 |
| 2023-02-21 23.554000 |
| 2023-02-22 23.645333 |
| 2023-02-23 23.735333 |
| 2023-02-24 23.817333 |
| ... |
| 2023-12-25 27.991333 |
| 2023-12-26 27.966667 |
| 2023-12-27 27.940667 |
| 2023-12-28 27.928333 |
| 2023-12-29 27.954000 |
| Name: Close, Length: 213, dtype: float64 |
| date_goal是什么 |
| DatetimeIndex(['2023-02-20', '2023-04-18', '2023-06-09', '2023-06-14', |
| '2023-07-03', '2023-08-15', '2023-08-17', '2023-11-24', |
| '2023-12-13'], |
| dtype='datetime64[ns]', name='Date', freq=None) |
| 找出银叉点 |
| DatetimeIndex(['2023-04-11', '2023-06-02', '2023-06-13', '2023-06-21', |
| '2023-08-14', '2023-08-16', '2023-08-22', '2023-12-04', |
| '2023-12-26'], |
| dtype='datetime64[ns]', name='Date', freq=None) |
| |
| Date |
| 2023-02-20 1 |
| 2023-04-11 0 |
| 2023-04-18 1 |
| 2023-06-02 0 |
| 2023-06-09 1 |
| 2023-06-13 0 |
| 2023-06-14 1 |
| 2023-06-21 0 |
| 2023-07-03 1 |
| 2023-08-14 0 |
| 2023-08-15 1 |
| 2023-08-16 0 |
| 2023-08-17 1 |
| 2023-08-22 0 |
| 2023-11-24 1 |
| 2023-12-04 0 |
| 2023-12-13 1 |
| 2023-12-26 0 |
| dtype: int64 |
| 按照金叉购买的收益率 0.019397 |
| 23.140000000000008 |
- 输出



案例3
| import akshare as ak |
| """ |
| 检查 Python 的版本需要在 Python 3.8 以上,推荐使用 Python 3.10.x 及以上版本 |
| """ |
| stock_szse_area_summary_df = ak.stock_szse_area_summary(date="202401") |
| print(stock_szse_area_summary_df) |
| |
| |
| stock_df = ak.stock_zh_a_hist(symbol='601857', period="daily", |
| start_date='20230101', end_date='20240101', adjust="qfq") |
| print(stock_df.describe()) |
| print(stock_df) |
| from pandas import Series,DataFrame |
| WuLiangYe=DataFrame(stock_df) |
| print( "中国石油") |
| print( WuLiangYe) |
| |
| |
| csv_output_path = "贵州茅台.csv" |
| stock_df.to_csv(csv_output_path, index=False) |
查看详情
| UserWarning: 为了支持更多特性,请将 Pandas 升级到 2.1.0 及以上版本! |
| warnings.warn( |
| Empty DataFrame |
| Columns: [序号, 地区, 总交易额, 占市场, 股票交易额, 基金交易额, 债券交易额] |
| Index: [] |
| 开盘 收盘 最高 ... 涨跌幅 涨跌额 换手率 |
| count 242.000000 242.000000 242.000000 ... 242.000000 242.000000 242.000000 |
| mean 6.709132 6.721694 6.808471 ... 0.201942 0.010413 0.091033 |
| std 1.137603 1.129144 1.155182 ... 1.988103 0.135958 0.055287 |
| min 4.540000 4.530000 4.560000 ... -6.010000 -0.490000 0.030000 |
| 25% 5.637500 5.725000 5.772500 ... -0.735000 -0.050000 0.050000 |
| 50% 7.110000 7.120000 7.200000 ... 0.000000 0.000000 0.070000 |
| 75% 7.580000 7.547500 7.640000 ... 0.962500 0.070000 0.110000 |
| max 8.210000 8.150000 8.370000 ... 8.090000 0.610000 0.350000 |
| |
| [8 rows x 10 columns] |
| 日期 开盘 收盘 最高 最低 ... 成交额 振幅 涨跌幅 涨跌额 换手率 |
| 0 2023-01-03 4.55 4.58 4.58 4.52 ... 372173228.0 1.32 0.88 0.04 0.05 |
| 1 2023-01-04 4.55 4.56 4.57 4.53 ... 425278877.0 0.87 -0.44 -0.02 0.05 |
| 2 2023-01-05 4.54 4.55 4.56 4.53 ... 380338343.0 0.66 -0.22 -0.01 0.05 |
| 3 2023-01-06 4.55 4.54 4.56 4.54 ... 318747371.0 0.44 -0.22 -0.01 0.04 |
| 4 2023-01-09 4.56 4.55 4.56 4.54 ... 330873003.0 0.44 0.22 0.01 0.04 |
| .. ... ... ... ... ... ... ... ... ... ... ... |
| 237 2023-12-25 6.80 6.92 6.94 6.79 ... 545944105.0 2.20 1.32 0.09 0.05 |
| 238 2023-12-26 6.92 6.99 7.03 6.89 ... 663657089.0 2.02 1.01 0.07 0.06 |
| 239 2023-12-27 7.00 7.12 7.17 6.97 ... 767431892.0 2.86 1.86 0.13 0.07 |
| 240 2023-12-28 7.13 7.06 7.18 7.01 ... 825151570.0 2.39 -0.84 -0.06 0.07 |
| 241 2023-12-29 7.02 7.06 7.12 6.96 ... 836445198.0 2.27 0.00 0.00 0.07 |
| |
| [242 rows x 11 columns] |
| 中国石油 |
| 日期 开盘 收盘 最高 最低 ... 成交额 振幅 涨跌幅 涨跌额 换手率 |
| 0 2023-01-03 4.55 4.58 4.58 4.52 ... 372173228.0 1.32 0.88 0.04 0.05 |
| 1 2023-01-04 4.55 4.56 4.57 4.53 ... 425278877.0 0.87 -0.44 -0.02 0.05 |
| 2 2023-01-05 4.54 4.55 4.56 4.53 ... 380338343.0 0.66 -0.22 -0.01 0.05 |
| 3 2023-01-06 4.55 4.54 4.56 4.54 ... 318747371.0 0.44 -0.22 -0.01 0.04 |
| 4 2023-01-09 4.56 4.55 4.56 4.54 ... 330873003.0 0.44 0.22 0.01 0.04 |
| .. ... ... ... ... ... ... ... ... ... ... ... |
| 237 2023-12-25 6.80 6.92 6.94 6.79 ... 545944105.0 2.20 1.32 0.09 0.05 |
| 238 2023-12-26 6.92 6.99 7.03 6.89 ... 663657089.0 2.02 1.01 0.07 0.06 |
| 239 2023-12-27 7.00 7.12 7.17 6.97 ... 767431892.0 2.86 1.86 0.13 0.07 |
| 240 2023-12-28 7.13 7.06 7.18 7.01 ... 825151570.0 2.39 -0.84 -0.06 0.07 |
| 241 2023-12-29 7.02 7.06 7.12 6.96 ... 836445198.0 2.27 0.00 0.00 0.07 |
| |
| [242 rows x 11 columns] |
- 输出

· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
· 字符编码:从基础到乱码解决
· 提示词工程——AI应用必不可少的技术