| import matplotlib.pyplot as plt |
| import numpy as np |
| from sklearn import datasets |
| from sklearn.metrics import silhouette_score |
| from sklearn.cluster import KMeans |
| |
| |
| iris = datasets.load_iris() |
| x = iris.data |
| print( type(x)) |
| print(x.shape) |
| from sklearn.manifold import TSNE |
| tsne=TSNE() |
| X=tsne.fit_transform(x) |
| print(X.shape) |
| plt.scatter(X[:,0], X[:,1]) |
| |
| |
| inertia = [] |
| silhouette_scores = [] |
| k_range = range(2, 11) |
| for k in k_range: |
| kmeans = KMeans(n_clusters=k, random_state=10).fit(X) |
| inertia.append(kmeans.inertia_) |
| silhouette_scores.append(silhouette_score(X, kmeans.labels_)) |
| |
| |
| plt.plot(k_range, silhouette_scores, marker='o') |
| plt.xlabel('Number of clusters') |
| plt.ylabel('Silhouette Score') |
| plt.title('Silhouette Score For Each k') |
| |
| plt.tight_layout() |
| |
| |
| print( np.unique( datasets.load_iris().target)) |
| plt.show() |
| <class 'numpy.ndarray'> |
| (150, 4) |
| (150, 2) |
| [0 1 2] |
- 输出

· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
· 字符编码:从基础到乱码解决
· 提示词工程——AI应用必不可少的技术