弗洛伊德算法
- 简介
和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法。 该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名 弗洛伊德算法(Floyd)计算图中各个顶点之间的最短路径 迪杰斯特拉算法用于计算图中某一个顶点到其他顶点的最短路径。 弗洛伊德算法 VS 迪杰斯特拉算法:迪杰斯特拉算法通过选定的被访问顶点,求出从出发访问顶点到其他顶点的最短路径; 弗洛伊德算法中每一个顶点都是出发访问点,所以需要将每一个顶点看做被访问顶点,求出从每一个顶点到其他顶点的最短路径
- 实现步骤
设置顶点vi到顶点vk的最短路径已知为Lik,顶点vk到vj的最短路径已知为Lkj,顶点vi到vj的路径为Lij, 则vi到vj的最短路径为:min((Lik+Lkj),Lij),vk的取值为图中所有顶点,则可获得vi到vj的最短路径 至于vi到vk的最短路径Lik或者vk到vj的最短路径Lkj,是以同样的方式获得
- 思路分析
将A作为中间顶点情况有 1. C-A-G [9],9表示权值之和 2. C-A-B [12] 3. G-A-B [7]
-
查看距离表,权值之和小于N,所以替换N,权值之和大于本来的值,则不替换
-
前驱关系表变为如下,例如CAB中间借用了A
-
遍历逻辑,中间顶点为A,出发顶点为A,遍历完所有终点,出发顶点为B,再依次遍历所有终点;将中间顶点换为B,再依次遍历出发顶点和终点,依次类推
-
代码实现
public class FloydAlgorithm { public static void main(String[] args) { // 测试看看图是否创建成功 char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' }; //创建邻接矩阵 int[][] matrix = new int[vertex.length][vertex.length]; final int N = 65535; matrix[0] = new int[] { 0, 5, 7, N, N, N, 2 }; matrix[1] = new int[] { 5, 0, N, 9, N, N, 3 }; matrix[2] = new int[] { 7, N, 0, N, 8, N, N }; matrix[3] = new int[] { N, 9, N, 0, N, 4, N }; matrix[4] = new int[] { N, N, 8, N, 0, 5, 4 }; matrix[5] = new int[] { N, N, N, 4, 5, 0, 6 }; matrix[6] = new int[] { 2, 3, N, N, 4, 6, 0 }; //创建 Graph 对象 Graph graph = new Graph(vertex.length, matrix, vertex); //调用弗洛伊德算法 graph.floyd(); graph.show(); } } // 创建图 class Graph { private char[] vertex; // 存放顶点的数组 private int[][] dis; // 保存,从各个顶点出发到其它顶点的距离,最后的结果,也是保留在该数组 private int[][] pre;// 保存到达目标顶点的前驱顶点 // 构造器 /** * * @param length * 大小 * @param matrix * 邻接矩阵 * @param vertex * 顶点数组 */ public Graph(int length, int[][] matrix, char[] vertex) { this.vertex = vertex; this.dis = matrix; this.pre = new int[length][length]; // 对pre数组初始化, 注意存放的是前驱顶点的下标 for (int i = 0; i < length; i++) { Arrays.fill(pre[i], i); } } // 显示pre数组和dis数组 public void show() { //为了显示便于阅读,我们优化一下输出 char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' }; for (int k = 0; k < dis.length; k++) { // 先将pre数组输出的一行 for (int i = 0; i < dis.length; i++) { System.out.print(vertex[pre[k][i]] + " "); } System.out.println(); // 输出dis数组的一行数据 for (int i = 0; i < dis.length; i++) { System.out.print("("+vertex[k]+"到"+vertex[i]+"的最短路径是" + dis[k][i] + ") "); } System.out.println(); System.out.println(); } } //弗洛伊德算法, 比较容易理解,而且容易实现 public void floyd() { int len = 0; //变量保存距离 //对中间顶点遍历, k 就是中间顶点的下标 [A, B, C, D, E, F, G] for(int k = 0; k < dis.length; k++) { // //从i顶点开始出发 [A, B, C, D, E, F, G] for(int i = 0; i < dis.length; i++) { //到达j顶点 // [A, B, C, D, E, F, G] for(int j = 0; j < dis.length; j++) { len = dis[i][k] + dis[k][j];// => 求出从i 顶点出发,经过 k中间顶点,到达 j 顶点距离 if(len < dis[i][j]) {//如果len小于 dis[i][j] dis[i][j] = len;//更新距离 pre[i][j] = pre[k][j];//更新前驱顶点 } } } } } }
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
· 字符编码:从基础到乱码解决
· 提示词工程——AI应用必不可少的技术