| 现有7个村庄(A, B, C, D, E, F, G) ,现在需要修路把7个村庄连通 |
| 各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里 |
| 如何修路保证各个村庄都能连通,并且总的修建公路总里程最短? |

| 修路问题本质就是就是最小生成树问题, 先介绍一下最小生成树(Minimum Cost Spanning Tree),简称MST。 |
| 给定一个带权的无向连通图,如何选取一棵生成树,使树上所有边上权的总和为最小,这叫最小生成树 |
| N个顶点,一定有N-1条边 |
| 包含全部顶点 |
| N-1条边都在图中 |
| 求最小生成树的算法主要是普里姆算法和克鲁斯卡尔算法 |

| 普利姆(Prim)算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,也就是所谓的极小连通子图 |
| |
| 设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合 |
| |
| 若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u]=1 |
| |
| 若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj加入集合U中,将边(ui,vj)加入集合D中,标记visited[vj]=1 |
| |
| 重复步骤②,直到U与V相等,即所有顶点都被标记为访问过,此时D中有n-1条边 |
-
思路分析

-
代码实现
| public class PrimAlgorithm { |
| |
| public static void main(String[] args) { |
| |
| char[] data = new char[]{'A','B','C','D','E','F','G'}; |
| int verxs = data.length; |
| |
| int [][]weight=new int[][]{ |
| {10000,5,7,10000,10000,10000,2}, |
| {5,10000,10000,9,10000,10000,3}, |
| {7,10000,10000,10000,8,10000,10000}, |
| {10000,9,10000,10000,10000,4,10000}, |
| {10000,10000,8,10000,10000,5,4}, |
| {10000,10000,10000,4,5,10000,6}, |
| {2,3,10000,10000,4,6,10000},}; |
| |
| MGraph graph = new MGraph(verxs); |
| |
| MinTree minTree = new MinTree(); |
| minTree.createGraph(graph, verxs, data, weight); |
| |
| minTree.showGraph(graph); |
| |
| minTree.prim(graph, 1); |
| } |
| |
| } |
| |
| |
| class MinTree { |
| |
| |
| |
| |
| |
| |
| |
| public void createGraph(MGraph graph, int verxs, char data[], int[][] weight) { |
| int i, j; |
| for(i = 0; i < verxs; i++) { |
| graph.data[i] = data[i]; |
| for(j = 0; j < verxs; j++) { |
| graph.weight[i][j] = weight[i][j]; |
| } |
| } |
| } |
| |
| |
| public void showGraph(MGraph graph) { |
| for(int[] link: graph.weight) { |
| System.out.println(Arrays.toString(link)); |
| } |
| } |
| |
| |
| |
| |
| |
| |
| public void prim(MGraph graph, int v) { |
| |
| int visited[] = new int[graph.verxs]; |
| |
| |
| |
| |
| |
| visited[v] = 1; |
| |
| int h1 = -1; |
| int h2 = -1; |
| int minWeight = 10000; |
| for(int k = 1; k < graph.verxs; k++) { |
| |
| for(int i = 0; i < graph.verxs; i++) { |
| for(int j = 0; j< graph.verxs;j++) { |
| if(visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) { |
| |
| minWeight = graph.weight[i][j]; |
| h1 = i; |
| h2 = j; |
| } |
| } |
| } |
| |
| System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + "> 权值:" + minWeight); |
| |
| visited[h2] = 1; |
| |
| minWeight = 10000; |
| } |
| } |
| } |
| |
| class MGraph { |
| int verxs; |
| char[] data; |
| int[][] weight; |
| |
| public MGraph(int verxs) { |
| this.verxs = verxs; |
| data = new char[verxs]; |
| weight = new int[verxs][verxs]; |
| } |
| } |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南