展开
拓展 关闭
订阅号推广码
GitHub
视频
公告栏 关闭

贪心算法

  • 应用实例
假设存在如下表的需要付费的广播台,以及广播台信号可以覆盖的地区。 如何选择最少的广播台,让所有的地区都可以接收到信号

  • 思路分析
目前并没有算法可以快速计算得到准备的值, 使用贪婪算法,则可以得到非常接近的解,并且效率高。选择策略上,因为需要覆盖全部地区的最小集合:
遍历所有的广播电台, 找到一个覆盖了最多未覆盖的地区的电台(此电台可能包含一些已覆盖的地区,但没有关系) 
将这个电台加入到一个集合中(比如ArrayList), 想办法把该电台覆盖的地区在下次比较时去掉。
重复第1步直到覆盖了全部的地区
  • 先将所有地区放到1个集合中,遍历第1次,发现K1覆盖了3个地区

  • maxKey指向K1广播,将K1放到selects集合中

  • 同时将allAreas集合中的K1对应的地区删除,key再遍历第2次时,K1覆盖0个地区,K2覆盖2个地区

  • 依次类推

  • 代码实现

public class GreedyAlgorithm {

	public static void main(String[] args) {
		//创建广播电台,放入到Map
		HashMap<String,HashSet<String>> broadcasts = new HashMap<String, HashSet<String>>();
		//将各个电台放入到broadcasts
		HashSet<String> hashSet1 = new HashSet<String>();
		hashSet1.add("北京");
		hashSet1.add("上海");
		hashSet1.add("天津");
		
		HashSet<String> hashSet2 = new HashSet<String>();
		hashSet2.add("广州");
		hashSet2.add("北京");
		hashSet2.add("深圳");
		
		HashSet<String> hashSet3 = new HashSet<String>();
		hashSet3.add("成都");
		hashSet3.add("上海");
		hashSet3.add("杭州");
		
		HashSet<String> hashSet4 = new HashSet<String>();
		hashSet4.add("上海");
		hashSet4.add("天津");
		
		HashSet<String> hashSet5 = new HashSet<String>();
		hashSet5.add("杭州");
		hashSet5.add("大连");
	
		//加入到map
		broadcasts.put("K1", hashSet1);
		broadcasts.put("K2", hashSet2);
		broadcasts.put("K3", hashSet3);
		broadcasts.put("K4", hashSet4);
		broadcasts.put("K5", hashSet5);
		
		//allAreas 存放所有的地区
		HashSet<String> allAreas = new HashSet<String>();
		allAreas.add("北京");
		allAreas.add("上海");
		allAreas.add("天津");
		allAreas.add("广州");
		allAreas.add("深圳");
		allAreas.add("成都");
		allAreas.add("杭州");
		allAreas.add("大连");
		
		//创建ArrayList, 存放选择的电台集合
		ArrayList<String> selects = new ArrayList<String>();
		
		//定义一个临时的集合, 在遍历的过程中,存放遍历过程中的电台覆盖的地区和当前还没有覆盖的地区的交集
		HashSet<String> tempSet = new HashSet<String>();
		
		//定义给maxKey , 保存在一次遍历过程中,能够覆盖最大未覆盖的地区对应的电台的key
		//如果maxKey 不为null , 则会加入到 selects
		String maxKey = null;
		while(allAreas.size() != 0) { // 如果allAreas 不为0, 则表示还没有覆盖到所有的地区
			//每进行一次while,需要
			maxKey = null;
			//遍历 broadcasts, 取出对应key
			for(String key : broadcasts.keySet()) {
				//每进行一次for
				tempSet.clear();
				//当前这个key能够覆盖的地区
				HashSet<String> areas = broadcasts.get(key);
				tempSet.addAll(areas);
				//求出tempSet 和   allAreas 集合的交集, 交集会赋给 tempSet
				tempSet.retainAll(allAreas);
				//如果当前这个集合包含的未覆盖地区的数量,比maxKey指向的集合地区还多
				//就需要重置maxKey
				// tempSet.size() >broadcasts.get(maxKey).size()) 体现出贪心算法的特点,每次都选择最优的
				if(tempSet.size() > 0 && 
						(maxKey == null || tempSet.size() >broadcasts.get(maxKey).size())){
					maxKey = key;
				}
			}
			//maxKey != null, 就应该将maxKey 加入selects
			if(maxKey != null) {
				selects.add(maxKey);
				//将maxKey指向的广播电台覆盖的地区,从 allAreas 去掉
				allAreas.removeAll(broadcasts.get(maxKey));
			}
		}
		System.out.println("得到的选择结果是" + selects);//[K1,K2,K3,K5]
	}

}
posted @ 2022-09-28 14:35  DogLeftover  阅读(23)  评论(0编辑  收藏  举报