展开
拓展 关闭
订阅号推广码
GitHub
视频
公告栏 关闭

基数排序

  • 简介
基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是通过键值的各个位的值,
将要排序的元素分配至某些“桶”中,达到排序的作用

基数排序法是属于稳定性的排序,基数排序法的是效率高的稳定性排序法

基数排序(Radix Sort)是桶排序的扩展

基数排序是1887年赫尔曼·何乐礼发明的。它是这样实现的:将整数按位数切割成不同的数字,然后按每个位数分别比较
  • 基本思想
将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。
这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列
  • 应用实例
将数组 {53, 3, 542, 748, 14, 214} 使用基数排序, 进行升序排序

  • 代码实现
public class RadixSort {

	public static void main(String[] args) {
		int arr[] = { 53, 3, 542, 748, 14, 214};
		radixSort(arr);
	}

	//基数排序方法
	public static void radixSort(int[] arr) {
                //定义一个二维数组,表示10个桶, 每个桶就是一个一维数组
		//说明
		//1. 二维数组包含10个一维数组
		//2. 为了防止在放入数的时候,数据溢出,则每个一维数组(桶),大小定为arr.length
		//3. 名明确,基数排序是使用空间换时间的经典算法
		int[][] bucket = new int[10][arr.length];
		//为了记录每个桶中,实际存放了多少个数据,我们定义一个一维数组来记录各个桶的每次放入的数据个数
		//可以这里理解
		//比如:bucketElementCounts[0] , 记录的就是  bucket[0] 桶的放入数据个数
		int[] bucketElementCounts = new int[10];

		//第1轮(针对每个元素的个位进行排序处理)
		for(int j = 0; j < arr.length; j++) {
			//取出每个元素的个位的值
			int digitOfElement = arr[j] / 1 % 10;
			//放入到对应的桶中
			bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
			bucketElementCounts[digitOfElement]++;
		}
		//按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
		int index = 0;
		//遍历每一桶,并将桶中是数据,放入到原数组
		for(int k = 0; k < bucketElementCounts.length; k++) {
			//如果桶中,有数据,我们才放入到原数组
			if(bucketElementCounts[k] != 0) {
				//循环该桶即第k个桶(即第k个一维数组), 放入
				for(int l = 0; l < bucketElementCounts[k]; l++) {
					//取出元素放入到arr
					arr[index++] = bucket[k][l];
				}
			}
			//第l轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
			bucketElementCounts[k] = 0;
		}
		System.out.println("第1轮,对个位的排序处理 arr =" + Arrays.toString(arr));
		
		//第2轮(针对每个元素的十位进行排序处理)
		for (int j = 0; j < arr.length; j++) {
			// 取出每个元素的十位的值
			int digitOfElement = arr[j] / 10  % 10; //748 / 10 => 74 % 10 => 4
			// 放入到对应的桶中
			bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
			bucketElementCounts[digitOfElement]++;
		}
		// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
		index = 0;
		// 遍历每一桶,并将桶中是数据,放入到原数组
		for (int k = 0; k < bucketElementCounts.length; k++) {
			// 如果桶中,有数据,我们才放入到原数组
			if (bucketElementCounts[k] != 0) {
				// 循环该桶即第k个桶(即第k个一维数组), 放入
				for (int l = 0; l < bucketElementCounts[k]; l++) {
					// 取出元素放入到arr
					arr[index++] = bucket[k][l];
				}
			}
			//第2轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
			bucketElementCounts[k] = 0;
		}
		System.out.println("第2轮,对个位的排序处理 arr =" + Arrays.toString(arr));
		
		//第3轮(针对每个元素的百位进行排序处理)
		for (int j = 0; j < arr.length; j++) {
			// 取出每个元素的百位的值
			int digitOfElement = arr[j] / 100 % 10; // 748 / 100 => 7 % 10 = 7
			// 放入到对应的桶中
			bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
			bucketElementCounts[digitOfElement]++;
		}
		// 按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
		index = 0;
		// 遍历每一桶,并将桶中是数据,放入到原数组
		for (int k = 0; k < bucketElementCounts.length; k++) {
			// 如果桶中,有数据,我们才放入到原数组
			if (bucketElementCounts[k] != 0) {
				// 循环该桶即第k个桶(即第k个一维数组), 放入
				for (int l = 0; l < bucketElementCounts[k]; l++) {
					// 取出元素放入到arr
					arr[index++] = bucket[k][l];
				}
			}
			//第3轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
			bucketElementCounts[k] = 0;
		}
		System.out.println("第3轮,对个位的排序处理 arr =" + Arrays.toString(arr)); 
	}

}
  • 优化1
public class RadixSort {

	public static void main(String[] args) {
		int[] arr = new int[8000000];
		for (int i = 0; i < 8000000; i++) {
			arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
		}
		System.out.println("排序前");
		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);
		
		radixSort(arr);
		
		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序前的时间是=" + date2Str);
	}

	//基数排序方法
	public static void radixSort(int[] arr) {
		//根据前面的推导过程,我们可以得到最终的基数排序代码
		//1. 得到数组中最大的数的位数
		int max = arr[0]; //假设第一数就是最大数
		for(int i = 1; i < arr.length; i++) {
			if (arr[i] > max) {
				max = arr[i];
			}
		}
		//得到最大数是几位数
		int maxLength = (max + "").length();
		
		//定义一个二维数组,表示10个桶, 每个桶就是一个一维数组
		//说明
		//1. 二维数组包含10个一维数组
		//2. 为了防止在放入数的时候,数据溢出,则每个一维数组(桶),大小定为arr.length
		//3. 名明确,基数排序是使用空间换时间的经典算法
		int[][] bucket = new int[10][arr.length];
		//为了记录每个桶中,实际存放了多少个数据,我们定义一个一维数组来记录各个桶的每次放入的数据个数
		//可以这里理解
		//比如:bucketElementCounts[0] , 记录的就是  bucket[0] 桶的放入数据个数
		int[] bucketElementCounts = new int[10];
		
		//这里我们使用循环将代码处理
		for(int i = 0 , n = 1; i < maxLength; i++, n *= 10) {
			//(针对每个元素的对应位进行排序处理), 第一次是个位,第二次是十位,第三次是百位..
			for(int j = 0; j < arr.length; j++) {
				//取出每个元素的对应位的值
				int digitOfElement = arr[j] / n % 10;
				//放入到对应的桶中
				bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
				bucketElementCounts[digitOfElement]++;
			}
			//按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
			int index = 0;
			//遍历每一桶,并将桶中是数据,放入到原数组
			for(int k = 0; k < bucketElementCounts.length; k++) {
				//如果桶中,有数据,我们才放入到原数组
				if(bucketElementCounts[k] != 0) {
					//循环该桶即第k个桶(即第k个一维数组), 放入
					for(int l = 0; l < bucketElementCounts[k]; l++) {
						//取出元素放入到arr
						arr[index++] = bucket[k][l];
					}
				}
				//第i+1轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
				bucketElementCounts[k] = 0;
			}			
		}
        }

}
  • 说明
基数排序是对传统桶排序的扩展,速度很快.

基数排序是经典的空间换时间的方式,占用内存很大, 当对海量数据排序时,容易造成 OutOfMemoryError 

基数排序时稳定的。[注:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,
即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的]

有负数的数组,我们不用基数排序来进行排序, 如果要支持负数,参考: https://code.i-harness.com/zh-CN/q/e98fa9 
posted @ 2022-09-24 14:21  DogLeftover  阅读(50)  评论(0编辑  收藏  举报