Loading

剑指offer题解(完结)

### 3-1 数组中重复的数字

1571133447774

每遍历数组中的一个数字,就让其归位(放置在正确的数组下标)。当在归位的过程中,发现该数组下标所存放的数字和当前要归位的数字相同时,则发生了重复,返回该数字。

空间复杂度O(1),时间复杂度O(n)。

public class FindDuplicateNum_3 {
    public static boolean findDuplicateNum(int[] arr, int length, int[] dup) {
        if (arr == null || length <= 0) {
            return false;
        }
        //时间复杂度O(n)
        for (int i = 0; i < length; i++) {
            //每个数字最多交换2次
            while (arr[i] != i) {
                if (arr[i] == arr[arr[i]]) {
                    dup[0] = arr[i];
                    return true;
                }
                swap(arr, i, arr[i]);
            }
        }
        return false;

    }

    private static void swap(int[] arr, int i, int j) {
        int tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
    }

}

3-2 不修改数组找出重复数字

1570713605981

空间复杂度O(1),采用类似二分查找的算法,时间复杂度O(nlogn)。

思路:将1~ n上的数字划分成两块:1~ m和m+1~ n,然后统计数组中该区间上的数字个数,如果数字个数大于区间长度,则发生了重复,然后在该区间上继续二分,直至区间长度等于1。

//不修改数组找出重复数字
public static int findDuplicateNumNoEdit(int[] arr, int length) {
    if (arr == null || length <= 0) {
        return -1;
    }
    int start = 1;
    int end = length - 1;

    while (start <= end) {

        int mid = start + ((end - start) >> 1);
        int count = getCount(arr, length, start, mid);
        //System.out.println(mid+" "+count);
        if (start == end) {
            if (count > 1) {
                return start;
            } else {
                return -1;
            }
        }
        if (count > (mid - start + 1)) {
            end = mid;
        } else {
            start = mid + 1;
        }

    }
    return -1;
}

private static int getCount(int[] arr, int length, int start, int end) {
    int count = 0;
    for (int i = 0; i < length; i++) {
        if (arr[i] >= start && arr[i] <= end) {
            count++;
        }
    }
    return count;
}

4 二维数组查找

1570761437213

从左下或者右上角开始查找,每次判断可以剔除一行或者是一列,时间复杂度O(n+m)

public static boolean Find(int target, int[][] array) {
    /*左下查找*/
    int rows = array.length;
    if (rows == 0) {
        return false;
    }
    int columns = array[0].length;
    if (columns == 0) {
        return false;
    }
    int column = 0;
    int row = rows - 1;
    //注意数组边界
    while (row >= 0 && column < columns) {
        if (target == array[row][column]) {
            return true;
        } else if (target < array[row][column]) {
            row--;
        } else {
            column++;
        }

    }
    return false;
}

5 替换空格

1570760015108

先统计出字符串中的空格数量,然后计算出替换后的字符串长度,从后往前遍历字符串,依次填充。

public static String replaceBlankSpace_2(String str) {
    if (str == null) {
        return null;
    }
    char[] chars = str.toCharArray();
    int count = 0;

    for (int i = 0; i < chars.length; i++) {
        if (chars[i] == ' ') {
            count++;
        }
    }
    int newLength = chars.length + (count << 1);
    int p1 = chars.length - 1;
    int p2 = newLength - 1;
    char[] newChars = new char[newLength];
    while (p1 >= 0) {
        if (chars[p1] == ' ') {
            newChars[p2--] = '0';
            newChars[p2--] = '2';
            newChars[p2--] = '%';
            p1--;
        } else {
            newChars[p2--] = chars[p1--];
        }
    }

    return String.valueOf(newChars);

}

6 从尾到头打印链表

1570762089940

使用栈,遍历一遍链表,将链表中的节点压栈,然后输出栈中的节点

import java.util.Stack;

public class FromHeadtoTailPrintLinkedList_6 {
    static class ListNode {
        int key;
        ListNode next;

        public ListNode(int key) {
            this.key = key;
        }
    }

    public static void fromHeadtoTailPrintLinkedListByStack(ListNode head) {
        if (head == null) {
            return;
        }
        Stack<ListNode> stack = new Stack();
        while (head != null) {
            stack.push(head);
            head = head.next;
        }

        while (!stack.isEmpty()) {
            System.out.print(stack.pop().key + " ");
        }

    }

    public static void fromHeadtoTailPrintLinkedListByRecursion(ListNode head) {
        if (head == null) {
            return;
        }

        fromHeadtoTailPrintLinkedListByStack(head.next);
        System.out.print(head.key + " ");

    }

    public static void main(String[] args) {
        ListNode head = new ListNode(0);
        head.next = new ListNode(1);
        head.next.next = new ListNode(2);
        head.next.next.next = new ListNode(3);
        fromHeadtoTailPrintLinkedListByStack(head);
        System.out.println();
        fromHeadtoTailPrintLinkedListByRecursion(head);

    }
}

7 重建二叉树

1570765755613

根据前序和中序遍历,可以确定每颗子树根节点所在的位置,然后根据根节点,划分左右子树,之后再分别在左右子树中重复之前的划分过程。(递归实现)

public static Node constructBinaryTreeByPreInOrder(int[] preOrder, int[] inOrder, int preOrder_start,
                                                   int inOrder_start, int length) {
    if (length == 0) {
        return null;
    }

    int rootInOrderIndex = 0;
    for (int i = inOrder_start; i < inOrder_start + length; i++) {
        if (preOrder[preOrder_start] == inOrder[i]) {
            rootInOrderIndex = i;
            break;
        }
    }
    int left_length = rootInOrderIndex - inOrder_start;
    int right_length = length - left_length - 1;
    //根节点
    Node root = new Node(preOrder[preOrder_start]);
    //构建左子树
    root.left = constructBinaryTreeByPreInOrder(preOrder, inOrder, preOrder_start + 1,
                                                inOrder_start, left_length);
    //构建右子树
    root.right = constructBinaryTreeByPreInOrder(preOrder, inOrder, preOrder_start + left_length + 1,
                                                 rootInOrderIndex + 1, right_length);
    return root;

}

8 二叉树的下一个节点

1571056951976

分三种情况:

  1. 当前节点有右子树,下一个节点是右子树中最左的节点
  2. 无右子树
    1. 父节点的左孩子是当前节点,下一个节点是父节点
    2. 遍历该节点的父节点,直到父节点的左孩子是当前节点,下一个节点是父节点
public class TreeNode {
    public int value;
    public TreeNode left;
    public TreeNode right;
    public TreeNode parent;

    public TreeNode(int value) {
        this.value = value;
    }
}

public static TreeNode findNextNode(TreeNode treeNode) {
    //当前节点有右子树,下一个节点是右子树中最左的节点
    if (treeNode.right != null) {
        TreeNode cur = treeNode.right;
        while (cur.left != null) {
            cur = cur.left;
        }
        return cur;
    } else {
        //无右子树
        TreeNode par = treeNode.parent;
        //父节点的左孩子是当前节点,下一个节点是父节点
        if (par.left == treeNode) {
            return par;
        } else {
            //遍历该节点的父节点,直到父节点的左孩子是当前节点,下一个节点是父节点
            while (par.left != treeNode) {
                par = par.parent;
                treeNode = treeNode.parent;
            }
            return par;
        }

    }

}

9 用两个栈实现队列

1571061821079

delteHead和getHead操作:只有stackPop为空时,才能往里面压入数据

import java.util.Stack;

public class TwoStackToQueue<T> {
    private Stack<T> stackPush;
    private Stack<T> stackPop;

    public TwoStackToQueue() {
        stackPush = new Stack<T>();
        stackPop = new Stack<T>();
    }

    public void appendTail(T node) {
        stackPush.push(node);
    }

    public T deleteHead() {
        if (stackPush.isEmpty() && stackPop.isEmpty()) {
            throw new RuntimeException("Queue is empty!");
        } else {
            if (stackPop.isEmpty()) {
                while (!stackPush.isEmpty()) {
                    stackPop.push((stackPush.pop()));
                }

            }

            return stackPop.pop();
        }
    }
    public T getHead(){
        if (stackPush.isEmpty() && stackPop.isEmpty()) {
            throw new RuntimeException("Queue is empty!");
        } else {
            if (stackPop.isEmpty()) {
                while (!stackPush.isEmpty()) {
                    stackPop.push((stackPush.pop()));
                }

            }

            return stackPop.peek();
        }

    }

    public static void main(String[] args) {
        TwoStackToQueue twoStackToQueue = new TwoStackToQueue();
        twoStackToQueue.appendTail(1);
        twoStackToQueue.appendTail(2);
        twoStackToQueue.appendTail(3);
        twoStackToQueue.appendTail(4);
        System.out.println(twoStackToQueue.deleteHead());
        System.out.println(twoStackToQueue.deleteHead());
        System.out.println(twoStackToQueue.deleteHead());
        twoStackToQueue.appendTail(5);
        System.out.println(twoStackToQueue.deleteHead());
        System.out.println(twoStackToQueue.getHead());
        System.out.println(twoStackToQueue.deleteHead());
        System.out.println(twoStackToQueue.deleteHead());

    }

}

用两个队列实现栈

引入队列queue1和queue2,每次pop操作,就将queue1中的节点都放入queue2中,直至queue1中的节点个数为1,然后再将queue1的节点poll,之后,再交换queue1和queue2中的值。peek操作类似。

import java.util.LinkedList;
import java.util.Queue;

public class TwoQueueToStack<T> {
    private Queue<T> queue1;
    private Queue<T> queue2;

    public TwoQueueToStack() {
        queue1 = new LinkedList<T>();
        queue2 = new LinkedList<T>();
    }

    public void push(T node) {
        queue1.add(node);

    }

    public T pop() {
        if (queue1.isEmpty() && queue2.isEmpty()) {
            throw new RuntimeException("the stack is empty!");
        }

        while (queue1.size() != 1) {
            queue2.add(queue1.poll());
        }
        T node = queue1.poll();
        Queue<T> queue = queue1;
        queue1 = queue2;
        queue2 = queue;
        return node;
    }

    public T peek() {
        if (queue1.isEmpty() && queue2.isEmpty()) {
            throw new RuntimeException("the stack is empty!");
        }
        T node = null;
        while (!queue1.isEmpty()) {
            node = queue1.poll();
            queue2.add(node);
        }

        Queue<T> queue = queue1;
        queue1 = queue2;
        queue2 = queue;

        return node;

    }

    public static void main(String[] args) {
        TwoQueueToStack twoQueueToStack = new TwoQueueToStack();
        twoQueueToStack.push(1);
        twoQueueToStack.push(2);
        twoQueueToStack.push(3);
        System.out.println(twoQueueToStack.pop());
        twoQueueToStack.push(4);
        System.out.println(twoQueueToStack.peek());
        System.out.println(twoQueueToStack.pop());
        System.out.println(twoQueueToStack.pop());
        System.out.println(twoQueueToStack.pop());
        System.out.println(twoQueueToStack.pop());

    }

}

10 斐波那契数列

1571104833926

1.递归,时间复杂度O(2n)

2.循环,时间复杂度O(n

public class Fibonacci_10 {
    public static int calFibonacciRecursive(int n) {
        if (n == 0) {
            return 0;
        }
        if (n == 1) {
            return 1;
        }

        return calFibonacciRecursive(n - 1) + calFibonacciRecursive(n - 2);
    }

    public static int calFibonacciNoRecursive(int n) {
        int[] res={0,1};
        if(n<2){
            return res[n];
        }
        int f1=0;
        int f2=1;
        int f=0;
        for (int i = 2; i <=n; i++) {
            f=f1+f2;
            f1=f2;
            f2=f;
        }

        return f;

    }

    public static void main(String[] args) {
        System.out.println(calFibonacciRecursive(10));
        System.out.println(calFibonacciNoRecursive(20));

    }
}

应用

1571104927352

1571104947040

11 旋转数组的最小数字

1571129856042

解法:

  1. 暴力,时间复杂度O(n)
  2. 二分查找,时间复杂度O(logn)。使用两个指针p1,p2,然后根据计算的mid值来移动p1,p2。
  3. 当arr[p1]== arr[mid] == arr[p2]时,无法判断p1和p2属于哪个递增子数组,直接调用getMin,进行顺序查找。
  4. 当arr[mid]>=arr[p1]时,mid属于p1所在的递增子数组,令p1=mid,继续二分。
  5. 当arr[mid]<=arr[p2]时,处理过程和2类似。

三种输入情况:

  1. 1,2,3,4,5
  2. 3,4,5,1,2
  3. 1,1,1,0,1
import org.jetbrains.annotations.NotNull;

public class FindMinNumberInRotateArray_11 {
    public static int findByDichotomy(int[] arr) {
        if (arr[0] < arr[arr.length - 1]) {
            return arr[0];
        }
        int p1 = 0;
        int p2 = arr.length - 1;
        int mid = 0;
        int min = arr[0];
        while (arr[p1] >= arr[p2]) {
            if (p1 + 1 == p2) {
                min = arr[p2];
                break;
            }

            mid = p1 + ((p2 - p1) >> 1);

            if (arr[mid] == arr[p1] && arr[mid] == arr[p2]) {
                return getMin(arr, p1, p2);

            }
            if (arr[mid] >= arr[p1]) {
                p1 = mid;

            } else if (arr[mid] <= arr[p2]) {
                p2 = mid;
            }
        }
        return min;

    }

    private static int getMin(int[] arr, int p1, int p2) {
        int min = arr[p1];
        for (int i = p1 + 1; i < p2; i++) {
            if (min > arr[i]) {
                min = arr[i];
            }
        }
        return min;
    }

    public static int findByForce(int[] arr) {
        int min = arr[0];
        for (int i = 1; i < arr.length; i++) {
            if (min > arr[i]) {
                min = arr[i];
            }
        }
        return min;
    }

    public static void main(String[] args) {
        int[] arr = {3, 4, 5, 1, 2};
        int[] arr1 = {1, 2, 3, 4, 5};
        int[] arr2 = {1, 0, 1, 1, 1};
        int[] arr3 = {1};
        System.out.println(comparator(arr));
        System.out.println(comparator(arr1));
        System.out.println(comparator(arr2));
        System.out.println(comparator(arr3));

    }

    @NotNull
    public static String comparator(int[] arr) {
        return findByDichotomy(arr) == findByForce(arr) ? "true" : "false";
    }

}

12 矩阵中的路径

1571393951935

思路:

回溯法,字符的遍历过程如下所示

1571394792073

public boolean hasPath(char[] matrix, int rows, int cols, char[] str) {
    if (matrix == null || str == null || rows <= 0 || cols <= 0) {
        return false;
    }

    //标记数组,用来记录该字符是否访问过
    boolean[][] mark = new boolean[rows][cols];
    char[][] chars = toArray(matrix, rows, cols);

    for (int i = 0; i < rows; i++) {
        for (int j = 0; j < cols; j++) {
            if (process(chars, str, 0, mark, i, j)) {
                return true;
            }
        }
    }

    return false;
}

//将一维数组转换成二维数组
public char[][] toArray(char[] matrix, int rows, int cols) {
    char[][] chars = new char[rows][cols];
    for (int i = 0, index = 0; i < rows; i++) {
        for (int j = 0; j < cols; j++) {
            chars[i][j] = matrix[index++];
        }

    }
    return chars;

}

//递归函数
public boolean process(char[][] chars, char[] str, int pathLength, boolean[][] mark, int row, int column) {
    //遍历的路径长度和字符串长度相等,说明,之前的字符都已经成功匹配,返回true
    if (pathLength == str.length) {
        return true;
    }
    //数组下标越界、字符不匹配、字符已经访问过,都返回false
    if (row < 0 || column < 0 || row >= chars.length || column >= chars[0].length
        || chars[row][column] != str[pathLength] || mark[row][column]) {
        return false;
    }
    //字符已访问,标记为true
    mark[row][column] = true;
    //递归遍历该字符傍边的字符,匹配成功,则路径长度加1
    if (process(chars, str, pathLength + 1, mark, row - 1, column) ||
        process(chars, str, pathLength + 1, mark, row + 1, column) ||
        process(chars, str, pathLength + 1, mark, row, column - 1) ||
        process(chars, str, pathLength + 1, mark, row, column + 1)) {
        return true;
    }
    //该字符旁边的字符都不匹配,则说明这条路不符合,还原,将字符的遍历标记设置为false
    mark[row][column] = false;
    return false;

}

13 机器人的运动范围

1571394884126

思路:图的深度优先遍历

public int movingCount(int threshold, int rows, int cols) {
    //标记数组
    boolean[][] mark = new boolean[rows][cols];
    //存储每个位置的数位和
    int[][] matrix = new int[rows][cols];
    for (int i = 0; i < rows; i++) {
        for (int j = 0; j < cols; j++) {
            matrix[i][j] = getValue(i) + getValue(j);
        }
    }

    return process(threshold, matrix, mark, 0, 0, rows, cols);

}

private int process(int threshold, int[][] matrix, boolean[][] mark, int i, int j, int rows, int cols) {
    int count = 0;
    //递归终止条件
    if (i < 0 || j < 0 || i >= rows || j >= cols || matrix[i][j] > threshold || mark[i][j]) {
        return 0;
    }
    //将访问过的位置标记为true
    mark[i][j] = true;
    //访问当前位置,加1,然后继续遍历该位置傍边的位置,累加起来,最终的返回值就是所能到达的格子数
    count = 1 + process(threshold, matrix, mark, i - 1, j, rows, cols) + process(threshold, matrix, mark, i + 1, j, rows, cols) +
        process(threshold, matrix, mark, i, j - 1, rows, cols) + process(threshold, matrix, mark, i, j + 1, rows, cols);
    return count;

}

//计算一个整数的数位之和
public int getValue(int num) {
    int res = 0;
    int tmp = 0;
    while (num / 10 > 0) {
        tmp = num / 10;
        res += num - tmp * 10;
        num = tmp;
    }
    res += num;
    return res;

}

14 剪绳子

1571404008081

public class cutRope_14 {
    //      思路:
    //      f(n)=max(f(i)*f(n-i)),0<i<n
    //      f(n)表示把绳子剪成若干段后各段乘积的最大值
    //1.递归
    public int cutRope(int target) {

        if (target < 2) {
            return 0;
        }
        if (target == 2) {
            return 1;
        }
        if (target == 3) {
            return 2;
        }

        int max = 0;

        for (int i = 1; i <= (target - 1) / 2; i++) {
            max = Math.max(max, process(i) * process(target - i));
        }

        return max;
    }

    public int process(int target) {
        //递归终止条件
        if (target < 4) {
            return target;
        }
        int max = 0;
        for (int i = 1; i <= (target - 1) / 2; i++) {

            max = Math.max(max, process(i) * process(target - i));
        }

        return max;

    }

    //2.动态规划,时间复杂度O(n^2),由递归转化而来
    public int cutRopeDP(int target) {
        if (target < 2) {
            return 0;
        }
        if (target == 2) {
            return 1;
        }
        if (target == 3) {
            return 2;
        }
        int[] dp = new int[target + 1];
        dp[1] = 1;
        dp[2] = 2;
        dp[3] = 3;
        for (int i = 4; i <= target; i++) {
            for (int j = 1; j <= i / 2; j++) {

                dp[i] = Math.max(dp[i], dp[j] * dp[i - j]);
            }
        }
        return dp[target];

    }

    //    3.贪心,时间复杂度O(1)
    //    n>4时,划分出尽可能多的3,因为3(n-3)>=2(n-2)
    //    n=4时,2*2 > 3*1,所以当划分出1和3时,要转变成2和2
    //    n<4时,特殊情况,单独处理
    public int cutRopeGreedy(int target) {
        if (target < 2) {
            return 0;
        }
        if (target == 2) {
            return 1;
        }
        if (target == 3) {
            return 2;
        }
        int timeOf3 = target / 3;
        if (target - timeOf3 * 3 == 1) {
            timeOf3--;
        }

        int timeOf2 = (target - timeOf3 * 3) / 2;
        int res = (int) (Math.pow(3, timeOf3) * Math.pow(2, timeOf2));
        return res;

    }

    //测试
    public static void main(String[] args) {
        cutRope_14 cutRope_14 = new cutRope_14();
        System.out.println(cutRope_14.cutRope(14));
        System.out.println(cutRope_14.cutRopeDP(14));
        System.out.println(cutRope_14.cutRopeGreedy(14));
    }

}

15 二进制中1的个数

1571829733900

public class BinaryNumber_15 {
    public int NumberOf1(int n) {
        //数字在计算机中以二进制形式存储,负数在计算机中以补码存储,int类型的数据占4个字节
        //为了防止负数右移出现死循环的情况,可以把1每次左移一位,然后和n比较
        int res = 0;
        int flag = 1;
        while (flag != 0) {
            if ((n & flag) != 0) {
                res++;
            }
            flag = flag << 1;
        }
        return res;
    }

    public int NumberOf1Improve(int n) {
        //(n-1)&n 每次运算的结果将n中二进制表示最右边的1变为0
        int res = 0;
        while (n != 0) {
            n=(n-1)&n;
            res++;
        }
        return res;
    }

    public static void main(String[] args) {
        BinaryNumber_15 binaryNumber_15 = new BinaryNumber_15();
        int res = binaryNumber_15.NumberOf1(-8);
        System.out.println(res);

    }
}

16 数值的整数次方

1571831242479

  • base=0,exponent<0是非法输入,给用户提示输入错误

  • 提高运算效率:

1571831788488

public class NumberExponent_16 {
    public double Power(double base, int exponent) {
        //非法输入
        if (base == 0 && exponent < 0) {
            throw new RuntimeException("input number error!");
        }
        double res = 1;
        double tmp = exponent;
        if (exponent < 0) {
            exponent = -exponent;
        }
        //O(n)
        for (int i = 1; i <= exponent; i++) {
            res = res * base;
        }
        if (tmp < 0) {
            res = 1 / res;
        }

        return res;

    }

    public double PowerImprove(double base, int exponent) {
        //非法输入
        if (base == 0 && exponent < 0) {
            throw new RuntimeException("input number error!");
        }
        double res = 1;
        double tmp = exponent;
        if (exponent < 0) {
            exponent = -exponent;
        }

        if (exponent % 2 == 0) {
            //O(n/2)
            for (int i = 1; i <= exponent / 2; i++) {
                res = res * base;
            }
            res = res * res;
        } else {
            for (int i = 1; i <= (exponent - 1) / 2; i++) {
                res = res * base;
            }
            res = res * res * base;
        }

        if (tmp < 0) {
            res = 1 / res;
        }

        return res;

    }
}

17 打印从1到最大的n位数

1571835029514

本质上是0-9的全排列顺序输出问题,用递归实现。

大数问题,一般使用字符串来表示数字。

public class PrintMaxNumber_17 {
    //n没有限定范围,大数问题,需要用字符串来表示
    public void print(int n) {
        if (n <= 0) {
            throw new RuntimeException("error input!");
        }
        char[] nums=new char[n];
        for (int i = 0; i < 10; i++) {
            //数字转字符,'0' + i 是 i 的ascii码
            nums[0]=(char)('0'+i);
            process(nums,0,n);
        }
    }

    public void process(char[] nums,int index,int len){
        if(index==len-1){
            print(nums);
            return;
        }
        for (int i = 0; i < 10; i++) {
            nums[index+1]=(char)('0'+i);
            process(nums,index+1,len);
        }

    }

    private void print(char[] nums) {
        //标记位,用来判断数字0之前是否有非零数字出现过
        int flag=0;
        String str="";
        for (int i = 0; i < nums.length; i++) {
            if(nums[i]!='0'){
                flag=1;
                str+=nums[i];
            }
            if(nums[i]=='0'&&flag==1){
                str+=nums[i];
            }
        }
        System.out.print(str+" ");
    }

    public static void main(String[] args) {
        PrintMaxNumber_17 printMaxNumber_17=new PrintMaxNumber_17();
        printMaxNumber_17.print(3);

    }
}

18 删除链表中的节点

image-20191025143654118

链表中删除节点的两种方法:image-20191025143901080

public class DeleteNode_18 {
    static class Node {
        int value;
        Node next;

        public Node(int value) {
            this.value = value;
        }

    }

    //O(1)
    public static Node deleteNode(Node head, Node deleteNode) {
        //要删除节点的下一个节点不为空时,用下一个节点的值替代当前节点,然后将当前节点指向下一个节点的节点,O(1)
        if (deleteNode.next != null) {
            deleteNode.value = deleteNode.next.value;
            deleteNode.next = deleteNode.next.next;
        } else {
            //链表中只有一个节点
            if (head == deleteNode) {
                head = null;
            } else {
                //要删除节点的下一个节点为空,即链表中最后一个节点,O(n)
                Node cur = head;
                while (cur.next != deleteNode) {
                    cur = cur.next;
                }
                cur.next = null;
            }
        }

        return head;

    }

    public static void printNode(Node head) {
        while (head != null) {
            System.out.print(head.value + " ");
            head = head.next;
        }
    }

    public static void main(String[] args) {
        Node node1 = new Node(1);
        Node node2 = new Node(2);
        Node node3 = new Node(3);
        node1.next = node2;
        node2.next = node3;
        Node head = deleteNode(node1, node3);

        printNode(head);

    }

}

19 正则表达式匹配

image-20191027134347823

image-20191027145920030

当模式中的第二个字符不是 “*” 时:

1、如果字符串第一个字符和模式中的第一个字符相匹配,那么字符串和模式都后移一个字符,然后匹配剩余的。

2、如果 字符串第一个字符和模式中的第一个字符不匹配,直接返回 false。

而当模式中的第二个字符是 “*” 时:

如果字符串第一个字符跟模式第一个字符不匹配,则模式后移 2 个字符,继续匹配。如果字符串第一个字符跟模式第一个字符匹配,可以有 3 种匹配方式:

1、模式后移 2 字符,相当于 x * 被忽略;

2、字符串后移 1 字符,模式后移 2 字符;

3、字符串后移 1 字符,模式不变,即继续匹配字符下一位,因为 * 可以匹配多位;

这里需要注意的是:Java 里,要时刻检验数组是否越界。

public class RegularExpressionMatch_19 {

    public boolean match(char[] str, char[] pattern) {
        if (str == null || pattern == null) {
            return false;
        }
        int strIndex = 0;
        int patternIndex = 0;
        return matchCore(str, strIndex, pattern, patternIndex);
    }

    public boolean matchCore(char[] str, int strIndex, char[] pattern, int patternIndex) {
        //有效性检验:str到尾,pattern到尾,匹配成功
        if (strIndex == str.length && patternIndex == pattern.length) {
            return true;
        }
        //pattern先到尾,匹配失败
        if (strIndex != str.length && patternIndex == pattern.length) {
            return false;
        }
        //模式第2个是*,且字符串第1个跟模式第1个匹配,分3种匹配模式;如不匹配,模式后移2位
        if (patternIndex + 1 < pattern.length && pattern[patternIndex + 1] == '*') {
            if ((strIndex != str.length && pattern[patternIndex] == str[strIndex])
                    || strIndex != str.length && (pattern[patternIndex] == '.')) {
                return matchCore(str, strIndex, pattern, patternIndex + 2)// 模式后移2,视为x*匹配0个字符
                        || matchCore(str, strIndex + 1, pattern, patternIndex + 2)// 视为模式匹配1个字符
                        || matchCore(str, strIndex + 1, pattern, patternIndex);// *匹配1个,再匹配str中的下一个
            } else {
                return matchCore(str, strIndex, pattern, patternIndex + 2);
            }
        }
        //模式第2个不是*,且字符串第1个跟模式第1个匹配,则都后移1位,否则直接返回false
        if ((strIndex != str.length && pattern[patternIndex] == str[strIndex])
                || (strIndex != str.length && pattern[patternIndex] == '.')) {
            return matchCore(str, strIndex + 1, pattern, patternIndex + 1);
        }

        return false;
    }

    public static void main(String[] args) {
        RegularExpressionMatch_19 regularExpressionMatch_19 = new RegularExpressionMatch_19();
        boolean res = regularExpressionMatch_19.match("".toCharArray(), ".*".toCharArray());
        System.out.println(res);
    }

}

20 表示数值的字符串

image-20191027150227684

使用正则表达式进行匹配

[] : 字符集合
() : 分组
? : 重复 0 ~ 1 次

+ : 重复 1 ~ n 次

* : 重复 0 ~ n 次
. : 任意字符
\\. : 转义后的 .
\\d : 数字

import java.util.ArrayList;
import java.util.List;

public class JudgeNumber_20 {
    public boolean judge(String str) {
        if (str == null || str.length() == 0)
            return false;
        return str.matches("[+-]?\\d*(\\.\\d+)?([eE][+-]?\\d+)?");

    }

    public static void main(String[] args) {
        JudgeNumber_20 judgeNumber_20 = new JudgeNumber_20();
        String[] strings = {"+100", "5e2", "-123", "3.1416", "-1E-16",
                "12e", "1a3.14", "1.2.3", "+-5", "12e+4.3" };
        for (String str : strings) {
            System.out.println(str + " " + judgeNumber_20.judge(str));
        }

    }

}

21 调整数组顺序使奇数位于偶数前面

image-20191101211116362

使用双指针begin和end

begin=0,end=arr.length-1

public class OddEvenNumber_21 {
    public void adjust(int[] arr) {
        int begin = 0;
        int end = arr.length - 1;
        while (begin < end) {
            while (judgeOddEven(arr[begin]) && begin < end) {
                begin++;
            }
            while (!judgeOddEven(arr[begin]) && begin < end) {
                end--;
            }
            swap(arr, begin, end);

        }
    }
    
    public boolean judgeOddEven(int i) {
        return i % 2 == 0;
    }

    public void swap(int[] arr, int begin, int end) {
        int tmp = arr[begin];
        arr[begin] = arr[end];
        arr[end] = tmp;
    }

    public void printArray(int[] arr) {
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " ");
        }
        System.out.println();
    }

    public static void main(String[] args) {
        OddEvenNumber_21 oddEvenNumber_21 = new OddEvenNumber_21();
        int[] arr = new int[10];
        for (int i = 0; i < arr.length; i++) {
            arr[i] = (int) (Math.random() * 20);
        }
        oddEvenNumber_21.printArray(arr);
        oddEvenNumber_21.adjust(arr);
        oddEvenNumber_21.printArray(arr);

    }
}

22 链表中倒数第k个节点

image-20191101221249509

设置两个指针p1、p2,p1=p2=head

让p1先走k-1步,然后p1和p2同时走,p1走到链表尾结点,则p2正好走到倒数第k个节点

代码鲁棒性:

  1. 输入的链表头指针为null
  2. k=0
  3. 链表中节点个数小于k
public class TheLastKthNode_22 {
    static class ListNode {
        int value;
        ListNode next;

        ListNode(int value) {
            this.value = value;
        }
    }

    public static ListNode theLastKthNode(ListNode head, int k) {
        if(head==null){
            throw new RuntimeException("Error,head is null!");
        }
        if(k==0){
            throw new RuntimeException("Error,the value of k is 0!");
        }
        ListNode p1 = head;
        ListNode p2 = head;
        int i=0;
        while (i != (k - 1)) {
            if(p1.next==null){
                throw new RuntimeException("Error,the number of ListNode is less than k!");
            }
            p1 = p1.next;
            i++;
        }


        while (p1.next != null) {
            p1 = p1.next;
            p2 = p2.next;
        }

        return p2;

    }

    public static void main(String[] args) {
        ListNode listNode1 = new ListNode(1);
        ListNode listNode2 = new ListNode(2);
        ListNode listNode3 = new ListNode(3);
        ListNode listNode4 = new ListNode(4);
        ListNode listNode5 = new ListNode(5);
        ListNode listNode6 = new ListNode(6);
        listNode1.next = listNode2;
        listNode2.next = listNode3;
        listNode3.next = listNode4;
        listNode4.next = listNode5;
        listNode5.next = listNode6;

        ListNode listNode=theLastKthNode(listNode1,8);
        System.out.println(listNode.value);

    }

}

23 链表中环的入口节点

image-20191101221924959

image-20200109205226157

思路:

  1. 先判断链表是否存在环,使用快慢指针,快指针一次走两步,慢指针一次走一步,两个指针相遇,则说明链表有环,记录下相遇时候的节点LoopNode
  2. 计算环中的节点个数,从LoopNode节点出发,再次回到LoopNode,就得到了环中节点的个数k
  3. 设置两个指针p1和p2,让p1先走k步,然后p1和p2同时走,相遇时候的节点EntryNode即为环的入口节点
public class LoopOfLinkedList_23 {
    static class LinkedList {
        int value;
        LinkedList next;

        LinkedList(int value) {
            this.value = value;
        }
    }

    public static LinkedList findLoopNode(LinkedList head) {
        if (head == null) {
            throw new RuntimeException("head is null!");
        }
        LinkedList p1 = head.next;
        LinkedList p2 = head;
        LinkedList loopNode = null;

        while (p1.next != null) {

            p1 = p1.next;
            if (p1.next != null) {
                p1 = p1.next;
            }
            p2 = p2.next;
//            System.out.println(p1.value + " " + p2.value);
            if (p1 == p2) {
                loopNode = p1;
                break;
            }
        }
        if (loopNode == null) {
            return null;
        }

        int count = 1;
        LinkedList tmpList=loopNode;
        while (loopNode.next != tmpList) {
            count++;
//            System.out.println(count);
            loopNode = loopNode.next;
        }

        p1 = p2 = head;

        while (count-- > 0) {
            p1 = p1.next;
        }
        while (p1 != p2) {
            p1 = p1.next;
            p2 = p2.next;
        }

        return p1;

    }

    public static void main(String[] args) {
        LinkedList linkedList1 = new LinkedList(1);
        LinkedList linkedList2 = new LinkedList(2);
        LinkedList linkedList3 = new LinkedList(3);
        LinkedList linkedList4 = new LinkedList(4);
        LinkedList linkedList5 = new LinkedList(5);
        LinkedList linkedList6 = new LinkedList(6);
        linkedList1.next = linkedList2;
        linkedList2.next = linkedList3;
        linkedList3.next = linkedList4;
        linkedList4.next = linkedList5;
        linkedList5.next = linkedList6;
        linkedList6.next = linkedList3;

        LinkedList linkedList = findLoopNode(linkedList1);
        System.out.println(linkedList.value);

    }

}

24 反转链表

image-20191106191908176

  • 非递归:使用一个newList节点来记录逆向之后的头结点
  • 递归:每次递归,head.next要设置为null
public class ReverseLinkedList {
    static class LinkedList {
        int value;
        LinkedList next;

        LinkedList(int value) {
            this.value = value;
        }

    }
	//非递归
    public static LinkedList reverse(LinkedList head) {
        LinkedList newList = new LinkedList(-1);
        while (head != null) {
            LinkedList next = head.next;
            head.next = newList.next;
            newList.next = head;
            head = next;
        }
        return newList.next;
    }
	//递归
    public static LinkedList reverseByRecursive(LinkedList head){
        if(head==null||head.next==null){
            return head;
        }
        LinkedList next=head.next;
        head.next=null;
        LinkedList newHead=reverseByRecursive(next);
        next.next=head;
        return newHead;


    }


    public static void main(String[] args) {
        LinkedList linkedList1 = new LinkedList(1);
        LinkedList linkedList2 = new LinkedList(2);
        LinkedList linkedList3 = new LinkedList(3);
        LinkedList linkedList4 = new LinkedList(4);
        LinkedList linkedList5 = new LinkedList(5);
        LinkedList linkedList6 = new LinkedList(6);
        linkedList1.next = linkedList2;
        linkedList2.next = linkedList3;
        linkedList3.next = linkedList4;
        linkedList4.next = linkedList5;
        linkedList5.next = linkedList6;
        LinkedList reverseHead = reverse(linkedList1);
        while (reverseHead!=null){
            System.out.println(reverseHead.value);
            reverseHead=reverseHead.next;
        }
    }

}

25 合并两个排序的链表

image-20191106202817107

public class MergeSortedLinkedList_25 {
    public static LinkedList mergeSortedLinkedList(LinkedList head1, LinkedList head2) {

        LinkedList head = new LinkedList(-1);
        LinkedList cur = head;
        while (head1 != null && head2 != null) {
            if (head1.value <= head2.value) {
                cur.next = head1;
                head1 = head1.next;
            } else {
                cur.next = head2;
                head2 = head2.next;
            }
            cur = cur.next;
        }
        if (head1 != null) {
            cur.next = head1;
        }
        if (head2 != null) {
            cur.next = head2;
        }
        return head.next;

    }

    public static LinkedList mergeSortedLinkedListByRecursive(LinkedList head1, LinkedList head2) {
        if (head1 == null) {
            return head2;
        }
        if (head2 == null) {
            return head1;
        }

        if (head1.value <= head2.value) {
            head1.next = mergeSortedLinkedListByRecursive(head1.next, head2);
            return head1;
        } else {
            head2.next = mergeSortedLinkedListByRecursive(head1, head2.next);
            return head2;
        }

    }
}

26 树的子结构

image-20191106213518317

public class SubTree_26 {
    static class BinaryTreeNode {
        double value;
        BinaryTreeNode left;
        BinaryTreeNode right;

        BinaryTreeNode(int value) {
            this.value = value;
        }
    }

    //遍历所有根节点值相同的子树
    public static boolean hasSubTree(BinaryTreeNode binaryTreeNode1, BinaryTreeNode binaryTreeNode2) {
        boolean result = false;
        if (binaryTreeNode1 != null && binaryTreeNode2 != null) {
            if (binaryTreeNode1.value == binaryTreeNode2.value) {
                result = judge(binaryTreeNode1, binaryTreeNode2);
            }
            if (!result) {
                result = hasSubTree(binaryTreeNode1.left, binaryTreeNode2);
            }

            if (!result) {
                result = hasSubTree(binaryTreeNode1.right, binaryTreeNode2);
            }

        }
        return result;

    }

    //判断根节点相同的子树是否完全一样
    public static boolean judge(BinaryTreeNode binaryTreeNode1, BinaryTreeNode binaryTreeNode2) {
        if (binaryTreeNode2 == null) {
            return true;
        }
        if (binaryTreeNode1 == null) {
            return false;
        }

        if (!Equals(binaryTreeNode1.value, binaryTreeNode2.value)) {
            return false;
        } else {
            return judge(binaryTreeNode1.left, binaryTreeNode2.left) && judge(binaryTreeNode1.right, binaryTreeNode2.right);
        }

    }
    //计算机表示小数(float、double)存在误差,不能直接用等号判断两个小数是否相等。如果两个小数的差的绝对值很小,
    // 小于0.0000001,则认为相等
    public static boolean Equals(double a, double b) {
        if (Math.abs(a - b) < 0.0000001) {
            return true;
        } else {
            return false;
        }
    }

}

27 二叉树的镜像

image-20191124162537024

image-20191124162549574

前序遍历,递归依次交换左右节点

public class BinaryTreeMirror_27 {
    class BinaryTreeNode {
        int value;
        BinaryTreeNode left;
        BinaryTreeNode right;
    }

    public void mirrorRecursive(BinaryTreeNode root) {
        if (root == null) {
            return;
        }
        if (root.left == null && root.right == null) {
            return;
        }
        BinaryTreeNode tmp = root.left;
        root.left = root.right;
        root.right = tmp;
        if (root.left != null) {
            mirrorRecursive(root.left);
        }
        if (root.right != null) {
            mirrorRecursive(root.right);
        }
    }
}

28 对称的二叉树

image-20191124163739080

image-20191124163758444

思路:比较二叉树的根左右和根右左遍历的序列,来进行判断

public class BinaryTreeSymmetry_28 {
    class BinaryTreeNode {
        int value;
        BinaryTreeNode left;
        BinaryTreeNode right;
    }

    public boolean isSymmetry(BinaryTreeNode root) {

        return process(root, root);
    }

    public boolean process(BinaryTreeNode root1, BinaryTreeNode root2) {
        if (root1 == null && root2 == null) {
            return true;
        }
        if (root1 == null || root2 == null) {
            return false;
        }
        if (root1.value != root2.value) {
            return false;
        }

        return process(root1.left, root2.right) && process(root1.right, root2.left);

    }

}

29 顺时针打印矩阵

image-20191124165235771

每次打印一个圈,可以用递归或者循环实现

public class ClockwisePrintMatrix_29 {
    public static void clockwisePrintMatrix(int[][] arr) {
        if (arr == null) {
            return;
        }

        print(arr, 0, 0, arr.length - 1, arr[0].length - 1);

    }

    public static void print(int[][] arr, int leftX, int leftY, int rightX, int rightY) {
        //递归终止条件
        if (leftX > rightX || leftY > rightY) {
            return;
        }
        //单行和单列需要单独处理,否则会输出重复的序列
        if (leftX == rightX) {
            for (int i = leftY; i <= rightY; i++) {
                System.out.print(arr[leftX][i] + " ");
            }
        } else if (leftY == rightY) {
            for (int i = leftX; i <= rightX; i++) {
                System.out.print(arr[i][leftY] + " ");
            }
            //其他情况,顺时针转圈打印,注意边界的处理
        } else {

            for (int i = leftY; i < rightY; i++) {
                System.out.print(arr[leftX][i] + " ");
            }
            for (int i = leftX; i <= rightX; i++) {
                System.out.print(arr[i][rightY] + " ");

            }
            for (int i = rightY - 1; i >= leftY; i--) {
                System.out.print(arr[rightX][i] + " ");
            }

            for (int i = rightX - 1; i > leftX; i--) {
                System.out.print(arr[i][leftY] + " ");

            }

            print(arr, ++leftX, ++leftY, --rightX, --rightY);
        }

    }

    public static void main(String[] args) {
        int[][] arr = {
                {1, 2, 3, 4},
                {5, 6, 7, 8},
                {9, 10, 11, 12},
                {13, 14, 15, 16}

        };
        int[][] arr1 = {
                {1, 2, 3, 4},
        };

        int[][] arr2 = {
                {1}, {2},{3}, {4},
        };
        clockwisePrintMatrix(arr);
        System.out.println();
        clockwisePrintMatrix(arr1);
        System.out.println();
        clockwisePrintMatrix(arr2);

        /* result:
        * 1 2 3 4 8 12 16 15 14 13 9 5 6 7 11 10
        * 1 2 3 4
        * 1 2 3 4
        * */
    }
}

30 包含min函数的栈

image-20191124215614501

使用两个栈:dataStack和minStack。

  • dataStack存储实际的数据

  • minStack存储当前栈内元素最小的数据

image-20191124220023053

import java.util.Stack;

public class MinStack_30 {
    Stack<Integer> dataStack;
    Stack<Integer> minStack;

    public MinStack_30() {
        dataStack = new Stack<>();
        minStack = new Stack<>();
    }

    public void push(int data) {
        dataStack.push(data);
        if (minStack.isEmpty()) {
            minStack.push(data);
        } else {
            int min = minStack.peek();
            if (data < min) {
                min = data;
            }
            minStack.push(min);
        }

    }

    public int pop() {
        int data = dataStack.pop();
        minStack.pop();
        return data;
    }

    public int min() {
        return minStack.peek();

    }

    public static void main(String[] args) {
        MinStack_30 minStack = new MinStack_30();
        minStack.push(3);
        System.out.println(minStack.min());
        minStack.push(4);
        System.out.println(minStack.min());
        minStack.push(2);
        System.out.println(minStack.min());
        minStack.push(1);
        System.out.println(minStack.min());
        minStack.pop();
        System.out.println(minStack.min());

    }

}

31 栈的压入、弹出序列

题目描述
输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否为该栈的弹出顺序。假设压入栈的所有数字均不相等。
例如序列 1,2,3,4,5 是某栈的压入顺序,序列 4,5,3,2,1 是该压栈序列对应的一个弹出序列,但 4,3,5,1,2 就不可能是该压栈序列的弹出序列。

先往栈压入pushSequence的第一个数字pushSequence[0],然后将栈顶的数字和popSequence[index]的数字进行比较,相同就弹出栈顶元素,popIndex++;否则,pushIndex++,压入pushSequence[pushIndex]到栈。

import java.util.Stack;

public class SequenceStack_31 {

    public static boolean judgeSequenceStack(int[] pushSequence, int[] popSequence) {

        //使用stack模拟栈的压入弹出操作
        Stack<Integer> stack = new Stack<>();

        int n = pushSequence.length;
        if (pushSequence == null || popSequence == null || n == 0) {
            return false;
        }

        //pushIndex:压栈序列的下标;popIndex:出栈序列的下标
        for (int pushIndex = 0, popIndex = 0; pushIndex < n; pushIndex++) {
            stack.push(pushSequence[pushIndex]);
            //栈顶元素和出栈序列下标的元素一样时,弹出栈顶元素,继续比较下一个出栈序列元素
            while (!stack.isEmpty() && popIndex < n && stack.peek() == popSequence[popIndex]) {
                stack.pop();
                popIndex++;
            }
        }

        return stack.isEmpty();

    }

    public static void main(String[] args) {
        int[] pushSequence = {1, 2, 3, 4, 5};
        int[] popSequence1 = {4, 5, 3, 2, 1};
        int[] popSequence2 = {4, 3, 5, 1, 2};

        System.out.println(judgeSequenceStack(pushSequence, popSequence1));
        System.out.println(judgeSequenceStack(pushSequence, popSequence2));

    }

}

32-1 从上到下打印二叉树

题目描述
从上往下打印出二叉树的每个节点,同层节点从左至右打印。
例如,以下二叉树层次遍历的结果为:1,2,3,4,5,6,7

image-20191218224802719

思路:使用队列(先进先出),先将根节点压入队列,然后开始遍历队列,每弹出一个节点就输出节点的值,然后将该节点的左右孩子压入队列,重复此过程直到队列为空。

import java.util.LinkedList;
import java.util.Queue;

public class PrintBinaryTree_32 {
    public static class BinaryTree {
        int value;
        BinaryTree left;
        BinaryTree right;

        BinaryTree(int value) {
            this.value = value;
        }
    }

    public static void printBinaryTree(BinaryTree root) {
        if (root == null) {
            return;
        }

        Queue<BinaryTree> queue = new LinkedList<>();
        queue.add(root);
        while (!queue.isEmpty()) {
            BinaryTree binaryTree = queue.poll();

            if (binaryTree.left != null) {
                queue.add(binaryTree.left);
            }
            if (binaryTree.right != null) {
                queue.add(binaryTree.right);
            }
            if (!queue.isEmpty()) {
                System.out.print(binaryTree.value + ",");
            } else {
                System.out.print(binaryTree.value);

            }

        }

    }

    public static void main(String[] args) {
        BinaryTree root = new BinaryTree(8);
        BinaryTree left1 = new BinaryTree(6);
        BinaryTree right1 = new BinaryTree(10);
        BinaryTree left21 = new BinaryTree(5);
        BinaryTree right21 = new BinaryTree(7);
        BinaryTree left22 = new BinaryTree(9);
        BinaryTree right22 = new BinaryTree(11);

        root.left = left1;
        root.right = right1;
        left1.left = left21;
        left1.right = right21;
        right1.left = left22;
        right1.right = right22;

        printBinaryTree(root);

    }

}

32-2 分行从上到下打印二叉树

image-20191219103726063

使用map来记录节点对应的层数,从0开始计数。

public static void printBinaryTree_2(BinaryTree root) {
    if (root == null) {
        return;
    }

    Queue<BinaryTree> queue = new LinkedList<>();
    int index = 0;
    Map<BinaryTree, Integer> map = new HashMap();
    map.put(root, index);
    queue.add(root);

    int pre = index;
    while (!queue.isEmpty()) {
        BinaryTree binaryTree = queue.poll();
        index = map.get(binaryTree);
        index++;
        if (binaryTree.left != null) {
            map.put(binaryTree.left, index);
            queue.add(binaryTree.left);
        }
        if (binaryTree.right != null) {
            map.put(binaryTree.right, index);
            queue.add(binaryTree.right);
        }

        if (pre != map.get(binaryTree)) {
            System.out.println();
            pre = map.get(binaryTree);
            System.out.print(binaryTree.value);

        } else {
            if (map.get(binaryTree) == 0) {
                System.out.print(binaryTree.value);
            } else {
                System.out.print(" " + binaryTree.value);
            }
        }

    }
}

32-3 之字形打印二叉树

image-20191219173659673

使用两个栈,一个栈存储当前层的节点,另一个栈存储下一次的节点。设置一个标志位flag,用于调整每一层节点的存储顺序。

public static void printBinaryTree_3(BinaryTree root) {
    if (root == null) {
        return;
    }

    Stack<BinaryTree> stack1 = new Stack<>();
    Stack<BinaryTree> stack2 = new Stack<>();
    //记录节点对应的层数
    Map<BinaryTree, Integer> map = new LinkedHashMap<>();
    int index = 0;
    //根节点
    map.put(root, index);
    stack1.push(root);
    int pre = index;
    //标记变量
    boolean flag = true;

    /*每次处理一层,使用两个栈来存储节点*/
    while (!stack1.isEmpty() || !stack2.isEmpty()) {
        if (flag) {
            while (!stack1.isEmpty()) {

                BinaryTree node = stack1.pop();
                index = map.get(node);
                if (pre != index) {
                    System.out.println();
                    pre = index;
                }
                System.out.print(node.value + " ");
                index++;

                if (node.left != null) {
                    stack2.push(node.left);
                    map.put(node.left, index);
                }
                if (node.right != null) {
                    stack2.push(node.right);
                    map.put(node.right, index);
                }
            }
        } else {
            while (!stack2.isEmpty()) {
                BinaryTree node = stack2.pop();
                index = map.get(node);
                if (pre != index) {
                    System.out.println();
                    pre = index;
                }
                System.out.print(node.value + " ");
                index++;

                if (node.right != null) {
                    stack1.push(node.right);
                    map.put(node.right, index);
                }
                if (node.left != null) {
                    stack1.push(node.left);
                    map.put(node.left, index);
                }
            }
        }
        flag = !flag;
    }

}

33 二叉搜索树的后序遍历序列

题目描述
输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果。假设输入的数组的任意两个数字都互不相同。
例如,下图是后序遍历序列 1,3,2 所对应的二叉搜索树。

image-20191219192923640

递归,后序遍历根节点在最后面,而二叉搜索树的特征是“左小右大”,以此为条件,来依次遍历左右子树。

import class_06.Edge;

public class PostOrderSequence_32 {
    public static boolean judge(int[] arr) {
        if (arr.length == 0) {
            return false;
        }

        return process(arr, 0, arr.length - 1);

    }

    public static boolean process(int[] arr, int start, int end) {
        if (end - start <= 0) {
            return true;
        }
//        System.out.println(start);
//        System.out.println(end);
        int root = arr[end];
        int cur = start;
        while (cur < end && arr[cur] < root) {
            cur++;
        }

        for (int i = cur; i < end; i++) {
            if (arr[i] < root) {
                return false;
            }
        }
        return process(arr, start, cur - 1) && process(arr, cur, end - 1);

    }

    public static void main(String[] args) {
        int[] arr1 = {5, 7, 6, 9, 11, 10, 8};
        int[] arr2 = {7, 4, 6, 5};
        int[] arr3 = {9, 11, 10, 8};

        System.out.println(judge(arr1));
        System.out.println(judge(arr2));
        System.out.println(judge(arr3));
    }

}

34 二叉树中和为某一值的路径

image-20191224141812531

递归遍历

import java.util.ArrayList;

public class SumToPath_34 {
    public static class BinaryTree {
        int value;
        BinaryTree left;
        BinaryTree right;

        BinaryTree(int value) {
            this.value = value;
        }
    }


    public static void sumToPath(BinaryTree binaryTree, int target) {
       
        process(binaryTree, target, "");

    }

    public static void process(BinaryTree binaryTree, int target, String str) {
        if (binaryTree == null) {
            return;
        }
        str = str +binaryTree.value+"-";
        target = target - binaryTree.value;

        if (target == 0 && binaryTree.left == null && binaryTree.right == null) {
            System.out.println(str);

        }
        process(binaryTree.left, target, str);
        process(binaryTree.right, target, str);

    }

/*    private static ArrayList<ArrayList<Integer>> listAll = new ArrayList<ArrayList<Integer>>();
    private static ArrayList<Integer> list = new ArrayList<Integer>();

    public static ArrayList<ArrayList<Integer>> FindPath(BinaryTree root, int target) {
        if (root == null) return listAll;
        list.add(root.value);
        target -= root.value;
        if (target == 0 && root.left == null && root.right == null)
            listAll.add(new ArrayList<Integer>(list));
        FindPath(root.left, target);
        FindPath(root.right, target);
        list.remove(list.size() - 1);
        return listAll;
    }*/

    public static void main(String[] args) {

        BinaryTree root = new BinaryTree(8);
        BinaryTree left1 = new BinaryTree(6);
        BinaryTree right1 = new BinaryTree(10);
        BinaryTree left21 = new BinaryTree(5);
        BinaryTree right21 = new BinaryTree(7);
        BinaryTree left22 = new BinaryTree(9);
        BinaryTree right22 = new BinaryTree(1);

        root.left = left1;
        root.right = right1;
        left1.left = left21;
        left1.right = right21;
        right1.left = left22;
        right1.right = right22;

        sumToPath(root, 19);

  /*      ArrayList<ArrayList<Integer>> res = FindPath(root, 19);
        for (int i = 0; i < res.size(); i++) {
            System.out.println(res.get(i));
        }*/

    }
}

35 复杂链表的复制

image-20191224192627763

image-20191224192954782

public class CopyLinkedList_35 {
    public static class ComplexListNode {
        int value;
        ComplexListNode next;
        ComplexListNode random;

        public ComplexListNode(int value) {
            this.value = value;
        }
    }

    public static ComplexListNode copy(ComplexListNode head) {
        if (head == null) {
            return null;
        }

        //第一步,复制节点
        ComplexListNode cur = head;
        while (cur != null) {
            ComplexListNode copynode = new ComplexListNode(cur.value);
            copynode.next = cur.next;
            cur.next = copynode;
            cur = copynode.next;

        }
        //第二步,建立random连接
        cur = head;
        while (cur != null) {
            ComplexListNode copynode = cur.next;
            if (cur.random != null) {
                copynode.random = cur.random.next;
            }
            cur = copynode.next;
        }
        //第三步,拆分
        cur = head;
        ComplexListNode copyHead = head.next;
        while (cur.next != null) {
            ComplexListNode next = cur.next;
            cur.next = next.next;
            cur = next;

        }

        return copyHead;

    }

}

36 二叉搜索树与双向链表

image-20191224214248568

二叉搜索树的中序遍历是一个从小到大的有序序列,因此,只需在二叉树的中序递归遍历上做修改。

public class BinaryTreeLinkedList_36 {
    public class TreeNode {
        int val;
        TreeNode left;
        TreeNode right;

        public TreeNode(int val) {
            this.val = val;

        }

    }

    //pLast 用于记录当前链表的末尾节点。
    private TreeNode pLast = null;

    public TreeNode Convert(TreeNode root) {
        if (root == null)
            return null;

        // 如果左子树为空,那么根节点root为双向链表的头节点
        TreeNode head = Convert(root.left);
        if (head == null)
            head = root;

        // 连接当前节点root和当前链表的尾节点pLast
        root.left = pLast;
        if (pLast != null)
            pLast.right = root;
        pLast = root;

        Convert(root.right);

        return head;
    }
}

37 序列化二叉树

image-20191224224026561

import java.util.LinkedList;
import java.util.Queue;

public class SerializationAndUnserializationBinaryTree_37 {
    public static class BinaryTree {
        int value;
        BinaryTree left;
        BinaryTree right;

        BinaryTree(int value) {
            this.value = value;
        }
    }

    public static String serialization(BinaryTree root) {
        if (root == null) {
            return "$,";
        }
        String res = root.value + ",";
        res += serialization(root.left);
        res += serialization(root.right);
        return res;
    }

    public static BinaryTree unSerialization(String str) {
        String[] strings = str.split(",");
        Queue<String> queue = new LinkedList();
        for (int i = 0; i < strings.length; i++) {
            queue.add(strings[i]);
        }
        return unSerializationByPreOrder(queue);

    }

    public static BinaryTree unSerializationByPreOrder(Queue<String> queue) {
        String str = queue.poll();
        if (str == "$") {
            return null;
        }
        BinaryTree head = new BinaryTree(Integer.valueOf(str));
        head.left = unSerializationByPreOrder(queue);
        head.right = unSerializationByPreOrder(queue);

        return head;

    }

}

38 字符串的排列

image-20191225105040136

思路:

  1. 求所有可能出现在第一个位置的字符
  2. 固定第一个字符,求后面所有字符的全排列,递归求解

image-20191225105420171

public class PrintStringSequence_38 {
    public static void printStringSequence(char[] chs, int index) {
        if (index == chs.length - 1) {
            System.out.print(String.valueOf(chs) + " ");
            return;
        }

        for (int i = index; i < chs.length; i++) {
            //确定第一个字符,求后面字符串的全排列
            swap(chs, index, i);
            printStringSequence(chs, index + 1);
            //全排列完了,交换回来,保持原有顺序不变
            swap(chs, index, i);
        }

    }

    private static void swap(char[] chs, int index, int i) {
        char c = chs[index];
        chs[index] = chs[i];
        chs[i] = c;
    }

    public static void main(String[] args) {
        char[] chs="abc".toCharArray();
        printStringSequence(chs,0);

        /*
        * result:abc acb bac bca cba cab
         * */
    }


}

扩展:

image-20191225110519188

image-20191225110533224

image-20191225110830122

八皇后问题是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行、纵行或斜线上。八皇后问题可以推广为更一般的 n 皇后摆放问题:这时棋盘的大小变为 n×n,而皇后个数也变成 n 。当且仅当n = 1 或 n ≥ 4 时问题有解 。

递归求解:

public class EightQueens_38_2 {

    public static int count = 0;

    public static void process(int[] ColumnIndex, int index) {
        if (index == ColumnIndex.length - 1) {

            for (int i = 0; i < ColumnIndex.length; i++) {
                for (int j = 0; j < ColumnIndex.length; j++) {
                    //判断两个棋子是否在哎同一对角线上
                    if ((i != j) && (Math.abs(i - j) == Math.abs(ColumnIndex[i] - ColumnIndex[j]))) {
                        return;
                    }
                }
            }
            count++;
            return;
        }

        for (int i = index; i < ColumnIndex.length; i++) {
            swap(ColumnIndex, index, i);
            process(ColumnIndex, index + 1);
            swap(ColumnIndex, index, i);

        }

    }

    private static void swap(int[] ColumnIndex, int index, int i) {
        int tmp = ColumnIndex[index];
        ColumnIndex[index] = ColumnIndex[i];
        ColumnIndex[i] = tmp;
    }

    public static void main(String[] args) {
        int[] ColumnIndex = {0, 1, 2, 3, 4, 5, 6, 7};
        process(ColumnIndex, 0);
        System.out.println(count);
    }

}

回溯法:

https://juejin.im/post/5c8f139fe51d4513b907261d

image-20191225145425624

import java.util.Arrays;

public class QueenSolution {
    //修改棋盘的大小,可模拟其他皇后类似问题
    //模拟一个8X8的棋盘,0代表没有放置,1代表放置了一个皇后
    private int[][] board = new int[8][8];

    //解法的数量
    private int total = 0;

    /**
     * 放置皇后的时候从第0行开始,依次放置一个
     * 如果放置成功,那么继续放置下一行。(0-7)
     * 当要放置k=8的时候说明已经全部放置完
     * 毕了,找到了一个对应的解
     *
     * @param k 放置第几个皇后,K从0开始
     */
    //放置第K个皇后
    public void putQueen(int k) {
        int max = board.length;
        //放置第8个,说明棋盘已经放置完毕了,输出结果。
        if (k >= max) {
            //找到一个解,打印出来。
            total++;
            System.out.println(String.format("=============%s===============", total));
            for (int i = 0; i < max; i++) {
                System.out.println(Arrays.toString(board[i]));
            }
            System.out.println("=============================");
        } else {

            for (int i = 0; i < max; i++) {
                if (check(k, i)) {
                    board[k][i] = 1;
                    putQueen(k + 1);
                    //回溯
                    board[k][i] = 0;
                }
            }
        }
    }

    /**
     * 皇后放置的时候是从上到下每一行放置的,所以不用检查改行以及之后的行
     * 所以只用检查列以及左上右上对角线
     *
     * @param row 检查的对应行
     * @param col 检查的对应列
     * @return 返回改点是否满足可以放置一个皇后
     */
    private boolean check(int row, int col) {
        //检查列是否有皇后
        for (int i = 0; i < row; i++) {
            if (board[i][col] == 1) {
                return false;
            }
        }

        //检查左上对角线是否有皇后
        for (int m = row - 1, n = col - 1; m >= 0 && n >= 0; m--, n--) {
            if (board[m][n] == 1) {
                return false;
            }
        }

        //检查右上对角线是否有皇后
        for (int m = row - 1, n = col + 1; m >= 0 && n < board[0].length; m--, n++) {
            if (board[m][n] == 1) {
                return false;
            }
        }
        return true;

    }

    public static void main(String[] args) {
        QueenSolution solution = new QueenSolution();
        solution.putQueen(0);
    }
}

39 数组中出现次数超过一半的数字

image-20191225153652436

https://www.cnblogs.com/franknihao/p/9396491.html

public class MoreThanHalfNumber_39 {
 //    摩尔投票算法 , 能够在 O (n) 的时间和 O (1) 的空间解决问题
    public static int getMoreThanHalfNumber(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }
        int majority = nums[0];
        int count = 0;
        for (int i = 0; i < nums.length; i++) {
            count = nums[i] == majority ? count + 1 : count - 1;

            if (count == 0) {
                majority = nums[i];
                count = 1;
            }

        }

        count = 0;
        for (int i = 0; i < nums.length; i++) {
            count = majority == nums[i] ? count + 1 : count;
        }

        return count > nums.length / 2 ? majority : -1;

    }

}

扩展:找出所有出现次数大于 n/3 次的元素

最多只有两个,使用投票算法,将可能符合要求的两个元素找出来,然后再看它们是否都超过了 n/3, 来判断是否选择它们。

public static List<Integer> getMoreThan3_Number(int[] nums) {
    if (nums == null || nums.length == 0) {
        return new ArrayList<>();
    }

    int[] majority = new int[2];
    int count1 = 0, count2 = 0;
    //初始化要查找的两个不同的元素
    majority[0] = nums[0];
    majority[1] = -1;
    for (int i = 0; i < nums.length; i++) {
        if (nums[i] != majority[0]) {
            majority[1] = nums[i];
            break;
        }

    }

    //摩尔投票算法
    for (int i = 0; i < nums.length; i++) {
        if (nums[i] == majority[0]) {
            count1++;
        } else if (nums[i] == majority[1]) {
            count2++;
        } else if (count1 == 0) {
            majority[0] = nums[i];
            count1 = 1;
        } else if (count2 == 0) {
            majority[1] = nums[i];
            count2 = 1;
        } else {
            count1--;
            count2--;

        }

    }

    count1 = 0;
    count2 = 0;
    for (int i = 0; i < nums.length; i++) {
        count1 = majority[0] == nums[i] ? count1 + 1 : count1;
        count2 = majority[1] == nums[i] ? count2 + 1 : count2;
    }

    List<Integer> list = new ArrayList<>();
    //最后再遍历一次数组,确认元素是否超过n/3次
    if (count1 > nums.length / 3) {
        list.add(majority[0]);
    }
    if (count2 > nums.length / 3) {
        list.add(majority[1]);
    }

    return list;

}

40 最小的k个数

image-20191225212457347

使用最大堆来存储数据,维持最大堆的节点个数为k个。

import java.util.ArrayList;
import java.util.Comparator;
import java.util.PriorityQueue;

public class KMinNumbers_40 {
    public static ArrayList<Integer> getKMinNumbers(int[] nums, int k) {

        if (k > nums.length || k <= 0) {
            return new ArrayList<>();
        }

        //用最大堆来存储
        PriorityQueue<Integer> maxHeap = new PriorityQueue<Integer>(new Comparator<Integer>() {
            @Override
            public int compare(Integer o1, Integer o2) {
                return o2 - o1;
            }
        });

        //最大堆中的结点个数超过k个,就移除堆顶结点
        for (int i = 0; i < nums.length; i++) {
            maxHeap.add(nums[i]);
            if (maxHeap.size() > k) {
                maxHeap.poll();
            }
        }

        return new ArrayList<>(maxHeap);

    }

}

41-1 数据流中的中位数

image-20191226143647706

public static class Median {
    private PriorityQueue<Integer> minHeap;
    private PriorityQueue<Integer> maxHeap;

    public Median() {
        //小根堆
        minHeap = new PriorityQueue<>(new Comparator<Integer>() {
            @Override
            public int compare(Integer o1, Integer o2) {
                return o1 - o2;
            }
        });
        //大根堆
        maxHeap = new PriorityQueue<>(new Comparator<Integer>() {
            @Override
            public int compare(Integer o1, Integer o2) {
                return o2 - o1;
            }
        });

    }

    public void add(int number) {
        if (maxHeap.isEmpty()) {
            maxHeap.add(number);
        } else {
            if (maxHeap.peek() >= number) {
                maxHeap.add(number);
            } else if (minHeap.isEmpty()) {
                minHeap.add(number);
            } else if (minHeap.peek() <= number) {
                minHeap.add(number);

            } else {
                maxHeap.add(number);
            }
        }

        modifyHeap();

    }
    //两个堆的节点个数之差大于2,就动态调整堆
    public void modifyHeap() {
        if (maxHeap.size() == minHeap.size() + 2) {
            minHeap.add(maxHeap.poll());
        }
        if (minHeap.size() == maxHeap.size() + 2) {
            maxHeap.add(minHeap.poll());
        }
    }

    //取中位数,两个堆的节点个数加起来是偶数,中位数就是两个堆顶节点值相加除2;如果是奇数的话,中位数是节点个数多的堆的堆顶节点值。
    public double getMeDian() {
        int minHeapSize = minHeap.size();
        int maxHeapSize = maxHeap.size();
        double median = 0;
        if ((minHeapSize + maxHeapSize) % 2 == 0) {
            median = (minHeap.peek() + maxHeap.peek()) / 2.0;
        } else {
            median = minHeapSize > maxHeapSize ? minHeap.peek() : maxHeap.peek();
        }

        return median;

    }

}

41-2 字符流中第一个不重复的字符

题目描述
请实现一个函数用来找出字符流中第一个只出现一次的字符。例如,当从字符流中只读出前两个字符 "go" 时,第一个只出现一次的字符是 "g"。当从该字符流中读出前六个字符“google" 时,第一个只出现一次的字符是 "l"。

使用队列来存储字符,因为队列先进先出的特性,所以,可以从第一个字符开始判断。然后使用一个int[256]的数组,来存储字符出现的个数。

import java.util.LinkedList;
import java.util.Queue;

public class FindFirstChar_41_2 {
    private Queue<Character> queue = new LinkedList<>();
    private int[] chars = new int[256];

    //Insert one char from stringstream
    public void Insert(char ch) {
        chars[ch]++;
        queue.add(ch);


    }

    //return the first appearence once char in current stringstream
    public char FirstAppearingOnce() {
        while (!queue.isEmpty()) {
           if(chars[queue.peek()]==1){
               return queue.peek();
           }else {
               queue.poll();
           }
        }
        return '#';

    }

}

42 连续子数组的最大和

image-20191226155141106

思路:

动态规划

image-20191226160348635

import java.lang.reflect.Array;

public class MaxSum_42 {
    public int FindGreatestSumOfSubArray(int[] arr) {
        int max = Integer.MIN_VALUE;
        int sum = 0;
        for (int i = 0; i < arr.length; i++) {

            if (sum < 0) {
                max = arr[i] > max ? arr[i] : max;
                sum = arr[i];

            } else {
                sum += arr[i];
                max = sum > max ? sum : max;
            }
        }

        return max;

    }

    //动态规划
    public int FindGreatestSumOfSubArray_2(int[] array) {
        int[] s = array.clone();

        int sum = 0;
        for (int i = 0; i < array.length; i++) {
            if (sum < 0) {
                s[i] = array[i] > s[i] ? array[i] : s[i];
                sum = array[i];

            } else {
                sum += array[i];
                s[i] = sum > s[i] ? sum : s[i];
            }
        }
        int max = s[0];

        for (int i = 0; i < s.length; i++) {
            max = s[i] > max ? s[i] : max;
        }

        return max;

    }

    public static void main(String[] args) {
        MaxSum_42 maxSum_42 = new MaxSum_42();
        int[] arr = {6, -3, -2, 7, -15, 1, 2, 2};
        System.out.println(maxSum_42.FindGreatestSumOfSubArray(arr));
    }
}

43 从 1 到 n 整数中 1 出现的次数

image-20191227095333129

题解:https://leetcode-cn.com/problems/number-of-digit-one/solution/fen-bie-zhao-chu-mei-ge-wei-chu-xian-1de-ci-shu-by/

需要使用long类型的变量,使用int类型的变量在计算过程中会溢出。

public int countDigitOne(int n) {
        long sum = 0;
        long num = 1;
        long preNumber = 0;
        long curNumber = 0;
        long sufNumber = 0;
        while (num <= n) {
            sufNumber = n % num;
            curNumber = n % (num * 10) / num;
            preNumber = n / (num * 10);
            if (curNumber > 1) {
                sum += num * (preNumber + 1);
            } else if (curNumber == 1) {
                sum += num * preNumber + sufNumber + 1;
            } else {
                sum += num * preNumber;
            }
            num = num * 10;
        }
        int res=(int)sum;
        return res;
    }
}

44 数字序列中某一位数字

image-20191227095347109

public class NumSequence_44 {
    public int getDigitAtIndex(int index) {
        if (index < 0) {
            return -1;
        }
        int digit = 1;
        while (true) {
            if (index < getDigitSum(digit)) {
                return digitAtIndex(index, digit);
            } else {
                index -= getDigitSum(digit);
                digit++;
            }
        }

    }

    //计算index的下标
    private int digitAtIndex(int index, int digit) {
        int begin = getBeginNumber(digit);
        int shiftNumber = index / digit;
        String number = (begin + shiftNumber) + "";
        int count = index % digit;
        return number.charAt(count) - '0';

    }

    //得到digit位开始的数字
    private int getBeginNumber(int digit) {
        if (digit == 1) {
            return 0;
        }
        return (int) Math.pow(10, digit - 1);
    }

    //得到digit位的数字位数的总和
    public int getDigitSum(int digit) {
        if (digit == 1) {
            return 10;
        } else {
            return digit * 9 * (int) (Math.pow(10, digit - 1));
        }
    }

    public static void main(String[] args) {
        NumSequence_44 numSequence_44 = new NumSequence_44();
        System.out.println(numSequence_44.getDigitAtIndex(999));
    }
}

45 把数组排成最小的数

输入一个正整数数组,把数组里所有数字拼接起来排成一个数,打印能拼接出的所有数字中最小的一个。例如输入数组 {3,32,321},则打印出这三个数字能排成的最小数字为 321323。

可以看成是一个排序问题,在比较两个字符串 S1 和 S2 的大小时,应该比较的是 S1+S2 和 S2+S1 的大小,如果S1+S2 < S2+S1,那么应该把 S1 排在前面,否则应该把 S2 排在前面。

import java.util.Arrays;
import java.util.Comparator;

public class MinNumber_45 {
    public String PrintMinNumber(int[] numbers) {
        if (numbers == null || numbers.length == 0) {
            return "";
        }
        String[] strings = new String[numbers.length];
        for (int i = 0; i < numbers.length; i++) {
            strings[i] = numbers[i] + "";
        }

        Arrays.sort(strings, new Comparator<String>() {
            @Override
            public int compare(String o1, String o2) {
                return (o1 + o2).compareTo(o2 + o1);
            }
        });

        /*lambda表达式
        Arrays.sort(strings, (a, b) -> (a + b).compareTo(b + a));*/

        String res = "";
        for (int i = 0; i < strings.length; i++) {
            res += strings[i];
        }

        return res;

    }
}

46 把数字翻译成字符串

题目描述:
给定一个数字,按照如下规则翻译成字符串:1 翻译成“a”,2 翻译成“b”... 26 翻译成“z”。一个数字有多种翻译可能,例如 12258 一共有 5 种,分别是abbeh,lbeh,aveh,abyh,lyh。实现一个函数,用来计算一个数字有多少种不同的翻译方法。

public class NumberToString_46 {
    public int numDecodings(String s) {
        if (s == null || s.length() == 0) {
            return 0;
        }
        return digui(s, 0);
    }

    private int digui(String s, int start) {
        if (s.length() == start) {
            return 1;
        }
        if (s.charAt(start) == '0') {
            return 0;
        }
        //递归的递推式应该是如果index的后两位小于等于26,
        // digui(s, start) = digui(s, start+1)+digui(s, start+2)
        // 否则digui(s, start) = digui(s, start+1)
        int ans1 = digui(s, start + 1);
        int ans2 = 0;
        if (start < s.length() - 1) {
            int ten = (s.charAt(start) - '0') * 10;
            int one = s.charAt(start + 1) - '0';
            if (ten + one <= 26) {
                ans2 = digui(s, start + 2);
            }
        }
        return ans1 + ans2;

    }

    //动态规划
    public int numDecodingsByDP(String s) {
        if (s == null || s.length() == 0) {
            return 0;
        }
        int len = s.length();
        int[] dp = new int[len + 1];
        dp[len] = 1;
        if (s.charAt(len-1) == '0') {
            dp[len - 1] = 0;
        } else {
            dp[len - 1] = 1;
        }
        for (int i = len - 2; i >= 0; i--) {
            if (s.charAt(i) == '0') {
                dp[i] = 0;
                continue;
            }
            if (((s.charAt(i) - '0') * 10 + (s.charAt(i+1)-'0')) <= 26) {
                dp[i] = dp[i + 1] + dp[i + 2];
            } else {
                dp[i] = dp[i + 1];
            }

        }
        return dp[0];


    }

    public static void main(String[] args) {
        String s = "12258";
        System.out.println(new NumberToString_46().numDecodingsByDP(s));
        //res:5


    }

}

47 礼物的最大价值

2019-12-30 19-34-49 的屏幕截图

public class MaxGiftValue_47 {
    //递归
    public int getMost(int[][] board) {
        if (board == null || board.length == 0 || board[0].length == 0) {
            return 0;
        }
        return process(board, 0, 0);
    }

    public int process(int[][] board, int i, int j) {
        int res = board[i][j];
        if (i == board.length - 1 && j == board[0].length - 1) {
            return res;
        }

        if (i == board.length - 1) {
            return res + process(board, i, j + 1);
        }
        if (j == board[0].length - 1) {
            return res + process(board, i + 1, j);
        }

        return res + Math.max(process(board, i + 1, j), process(board, i, j + 1));
    }

    //动态规划(DP)
    public int getMostByDP(int[][] board) {
        if (board == null || board.length == 0 || board[0].length == 0) {
            return 0;
        }
        int rows = board.length;
        int columns = board[0].length;
        int[][] dp = new int[rows][columns];
        dp[0][0] = board[0][0];

        for (int i = 1; i < rows; i++) {
            dp[i][0] = dp[i - 1][0] + board[i][0];
        }
        for (int j = 1; j < columns; j++) {
            dp[0][j] = dp[0][j - 1] + board[0][j];
        }

        for (int i = 1; i < rows; i++) {
            for (int j = 1; j < columns; j++) {
                dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + board[i][j];
            }
        }

        return dp[rows - 1][columns - 1];


    }
}

48 最长不含重复字符的子字符串

题目描述:
输入一个字符串(只包含 a~z 的字符),求其最长不含重复字符的子字符串的长度。例如对于 arabcacfr,最长不含重复字符的子字符串为 acfr,长度为 4。

思路:

动态规划,f(i)表示以第i个字符为结尾的不包含重复字符的子字符串的最长长度。如果第i个字符之前没有出现过,那么f(i)=f(i-1)+1;如果第i个字符出现过,先计算两个同样字符之间的距离d,如果d>f(i-1),说明第i个字符没有在f(i-1)的最长子字符串中出现过,f(i)=f(i-1)+1;如果d<=f(i-1),则说明第i个字符在f(i-1)的最长子字符串中出现过,f(i)=d.

public class MaxLengthSubString_48 {


    public int maxLengthSubString(String s) {
        if (s == null || s.length() == 0) {
            return 0;

        }
        //int [26] 用于字母 ‘a’ - ‘z’ 或 ‘A’ - ‘Z’
        //int [128] 用于 ASCII 码
        //int [256] 用于扩展 ASCII 码
        //ASCII码128位,初始化长度为128的数组,赋值为-1,表示当前字符没有出现
        int[] pre = new int[128];
        for (int i = 0; i < pre.length; i++) {
            pre[i] = -1;
        }
        int maxLen = 0;
        int curLen = 0;

        for (int i = 0; i < s.length(); i++) {
            int c = s.charAt(i);
            int preIndex = pre[c];
            if (preIndex == -1 || i - preIndex > curLen) {
                curLen++;
                maxLen = Math.max(curLen, maxLen);
            } else {
                maxLen = Math.max(curLen, maxLen);
                int d = i - preIndex;
                curLen = d;

            }
            pre[c] = i;
        }

        return maxLen;


    }

    public static void main(String[] args) {
        System.out.println(new MaxLengthSubString_48().maxLengthSubString("arabcacfr"));
    }
}

49 丑数

题目描述
把只包含因子 2、3 和 5 的数称作丑数(Ugly Number)。例如 6、8 都是丑数,但 14 不是,因为它包含因子 7。习惯上我们把 1 当做是第一个丑数。求按从小到大的顺序的第 N 个丑数。

链接:https://www.nowcoder.com/questionTerminal/6aa9e04fc3794f68acf8778237ba065b?f=discussion
来源:牛客网

通俗易懂的解释:

首先从丑数的定义我们知道,一个丑数的因子只有 2,3,5,那么丑数 p = 2 ^ x * 3 ^ y * 5 ^ z,换句话说一个丑数一定由另一个丑数乘以 2 或者乘以 3 或者乘以 5 得到,那么我们从 1 开始乘以 2,3,5,就得到 2,3,5 三个丑数,在从这三个丑数出发乘以 2,3,5 就得到 4,6,10,6,9,15,10,15,25 九个丑数,我们发现这种方 *** 得到重复的丑数,而且我们题目要求第 N 个丑数,这样的方法得到的丑数也是无序的。那么我们可以维护三个队列:

(1)丑数数组: 1

乘以 2 的队列:2

乘以 3 的队列:3

乘以 5 的队列:5

选择三个队列头最小的数 2 加入丑数数组,同时将该最小的数乘以 2,3,5 放入三个队列;

(2)丑数数组:1,2

乘以 2 的队列:4

乘以 3 的队列:3,6

乘以 5 的队列:5,10

选择三个队列头最小的数 3 加入丑数数组,同时将该最小的数乘以 2,3,5 放入三个队列;

(3)丑数数组:1,2,3

乘以 2 的队列:4,6

乘以 3 的队列:6,9

乘以 5 的队列:5,10,15

选择三个队列头里最小的数 4 加入丑数数组,同时将该最小的数乘以 2,3,5 放入三个队列;

(4)丑数数组:1,2,3,4

乘以 2 的队列:6,8

乘以 3 的队列:6,9,12

乘以 5 的队列:5,10,15,20

选择三个队列头里最小的数 5 加入丑数数组,同时将该最小的数乘以 2,3,5 放入三个队列;

(5)丑数数组:1,2,3,4,5

乘以 2 的队列:6,8,10,

乘以 3 的队列:6,9,12,15

乘以 5 的队列:10,15,20,25

选择三个队列头里最小的数 6 加入丑数数组,但我们发现,有两个队列头都为 6,所以我们弹出两个队列头,同时将 12,18,30 放入三个队列;

……………………

疑问:

1. 为什么分三个队列?

丑数数组里的数一定是有序的,因为我们是从丑数数组里的数乘以 2,3,5 选出的最小数,一定比以前未乘以 2,3,5 大,同时对于三个队列内部,按先后顺序乘以 2,3,5 分别放入,所以同一个队列内部也是有序的;

2. 为什么比较三个队列头部最小的数放入丑数数组?

因为三个队列是有序的,所以取出三个头中最小的,等同于找到了三个队列所有数中最小的。

实现思路:

我们没有必要维护三个队列,只需要记录三个指针显示到达哪一步;“|” 表示指针,arr 表示丑数数组;

(1)1

|2

|3

|5

目前指针指向 0,0,0,队列头 arr [0] * 2 = 2, arr [0] * 3 = 3, arr [0] * 5 = 5

(2)1 2

2 |4

|3 6

|5 10

目前指针指向 1,0,0,队列头 arr [1] * 2 = 4, arr [0] * 3 = 3, arr [0] * 5 = 5

(3)1 2 3

2| 4 6

3 |6 9

|5 10 15

目前指针指向 1,1,0,队列头 arr [1] * 2 = 4, arr [1] * 3 = 6, arr [0] * 5 = 5

………………

public class UglyNumber_49 {
    public int getUglyNumber(int index) {
        if(index==0){
            return 0;
        }
        int res = 0;
        int count = 0;
        int i = 1;
        while (true) {
            if (judge(i)) {
                count++;
                if (count == index) {
                    res = i;
                    break;
                }
            }
            i++;
        }
        return res;
    }


    private Boolean judge(int num) {
        while (num % 2 == 0) {
            num = num / 2;
        }
        while (num % 3 == 0) {
            num = num / 3;
        }
        while (num % 5 == 0) {
            num = num / 5;
        }
        if (num == 1) {
            return true;
        }
        return false;
    }

    public int getUglyNumberByDP(int index) {
        if(index==0){
            return 0;
        }
        int i2 = 0, i3 = 0, i5 = 0;
        int[] dp = new int[index];
        dp[0] = 1;
        for (int i = 1; i < index; i++) {
            int next2 = dp[i2] * 2, next3 = dp[i3] * 3, next5 = dp[i5] * 5;
            dp[i] = Math.min(next2, Math.min(next3, next5));
            if (dp[i] == next2) {
                i2++;
            }
            if (dp[i] == next3)
                i3++;
            if (dp[i] == next5)
                i5++;
        }
        return dp[index - 1];

    }



    public static void main(String[] args) {
        int num = new UglyNumber_49().getUglyNumber(1500);
        System.out.println(num);
        int num_1 = new UglyNumber_49().getUglyNumberByDP(1500);
        System.out.println(num_1);

    }
}

50-1 第一个只出现一次的字符位置

题目描述
在一个字符串中找到第一个只出现一次的字符,并返回它的位置。

Input: abacc
Output: b

使用数组cnts来记录字符出现的次数,遍历两遍,时间复杂度O(n)

public class FirstNotRepeatingChar_50 {
    public int FirstNotRepeatingChar(String str) {
        //cnts,下标表示字符的ascii码,值表示字符出现的次数。
        int[] cnts = new int[256];
        for (int i = 0; i < str.length(); i++) {
            cnts[str.charAt(i)]++;
        }
        for (int i = 0; i < str.length(); i++) {
            if (cnts[str.charAt(i)] == 1) {
                return i;
            }
        }
        return -1;
    }

    public static void main(String[] args) {

        System.out.println(new FirstNotRepeatingChar_50().FirstNotRepeatingChar("google"));
        System.out.println(new FirstNotRepeatingChar_50().FirstNotRepeatingChar("NXWtnzyoHoBhUJaPauJaAitLWNMlkKwDYbbigdMMaYfkVPhGZcrEwp"));
        char c=0;
        System.out.println(c);
    }
}

50-2 字符流中第一个只出现一次的字符

2019-12-31 11-37-55 的屏幕截图

public class CharStatistics_50_2 {
    //occurrence,下标表示字符的ascii码,值表示字符出现的位置。
    public int[] occurrence = new int[256];
    //插入的字符个数
    public int index;

    //构造函数
    public CharStatistics_50_2() {
        index = 0;
        for (int i = 0; i < occurrence.length; i++) {
            occurrence[i] = -1;
        }

    }

    //插入
    public void insert(char ch) {


        if (occurrence[ch] == -1) {
            occurrence[ch] = index;
        } else {
            occurrence[ch] = -2;
        }
        index++;
    }

    //得到第一个只出现一次的字符
    public char firstAppearingOnce() {
        char ch = 0;
        int minIndex = Integer.MAX_VALUE;
        for (int i = 0; i < 256; i++) {
            if (occurrence[i] >= 0 && occurrence[i] < minIndex) {
                ch = (char) i;
                minIndex = occurrence[i];
            }

        }
        return ch;

    }

}

51 数组中的逆序对

题目描述
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数。

public class InversePairs_51 {
    // O(n^2)

    public int InversePairs(int[] array) {
        if (array == null || array.length < 2) {
            return 0;
        }
        long res = 0;
        for (int i = 0; i < array.length - 1; i++) {
            for (int j = i + 1; j < array.length; j++) {
                if (array[i] > array[j]) {
                    res++;
                }
            }
        }
        return (int) (res % 1000000007);
    }

    //辅助数组
    private int[] help;

    // O(nlogn)
    public int InversePairsByMergeSort(int[] array) {
        if (array == null || array.length < 2) {
            return 0;
        }

        return (int) (mergeSort(array, 0, array.length - 1) % 1000000007);

    }
    // 归并排序
    private long mergeSort(int[] array, int left, int right) {
        if (left == right) {
            return 0;
        }
        int mid = left + ((right - left) >> 1);
        return mergeSort(array, left, mid) + mergeSort(array, mid + 1, right) + merge(array, left, mid, right);

    }

    private long merge(int[] array, int left, int mid, int right) {
        help = new int[right - left + 1];
        int i = 0;
        int p1 = left;
        int p2 = mid + 1;
        long res = 0;
        // 关键代码
        // 每次合并的时候,统计逆序对的个数,合并完成之后,局部有序。使用归并排序,可以减少重复的比较次数,从而缩短时间复杂度。
        while (p1 <= mid && p2 <= right) {
            if (array[p1] > array[p2]) {
                for (int j = p2; j <= right; j++) {
                    res++;
                }
            }
            help[i++] = array[p1] > array[p2] ? array[p1++] : array[p2++];
        }

        while (p1 <= mid) {
            help[i++] = array[p1++];
        }
        while (p2 <= right) {
            help[i++] = array[p2++];
        }

        for (int j = 0; j < help.length; j++) {
            array[left + j] = help[j];
        }

        return res;


    }

    public static void main(String[] args) {
        int[] arr = {7, 5, 6, 4};
        //        System.out.println(new InversePairs_51().InversePairs(arr));
        System.out.println(new InversePairs_51().InversePairsByMergeSort(arr));


    }
}

52 两个链表的第一个公共结点

2019-12-31 17-24-00 的屏幕截图

import java.util.HashSet;

public class FindFirstCommonNode_52 {
    public class ListNode {
        int val;
        ListNode next = null;

        ListNode(int val) {
            this.val = val;
        }
    }

    // 使用HashSet
    public ListNode FindFirstCommonNode(ListNode pHead1, ListNode pHead2) {
        HashSet<ListNode> hashSet = new HashSet<>();
        ListNode head1 = pHead1;
        ListNode head2 = pHead2;
        while (head1 != null) {
            hashSet.add(head1);
            head1 = head1.next;
        }

        while (head2 != null) {
            if (hashSet.contains(head2)) {
                return head2;
            }
            head2 = head2.next;
        }

        return null;
    }

    // 先遍历两个链表,获得链表的长度,让较长的链表头指针先移动,使得两个链表剩余的节点个数相同,之后,两个链表的头指针同时开始移动,
    // 出现第一个相同值的节点,即为第一个公共节点。
    public ListNode FindFirstCommonNode_2(ListNode pHead1, ListNode pHead2) {
        int len1 = 0, len2 = 0;
        ListNode head1 = pHead1;
        ListNode head2 = pHead2;
        while (head1 != null) {
            len1++;
            head1 = head1.next;
        }

        while (head2 != null) {
            len2++;
            head2 = head2.next;
        }

        int max = Math.max(len1, len2);
        int move1 = max - len1;
        int move2 = max - len2;
        head1 = pHead1;
        head2 = pHead2;
        //下面两个循环只会执行一个
        while (move2 != 0) {
            head1 = head1.next;
            move2--;
        }

        while (move1 != 0) {
            head2 = head2.next;
            move1--;
        }

        while (head1 != null && head2 != null) {
            if (head1.val == head2.val) {
                return head1;
            }
            head1 = head1.next;
            head2 = head2.next;
        }
        return null;
    }


}

沟通能力和学习能力、知识迁移能力

53-1 数字在排序数组中出现的次数

题目描述

Input:
nums = 1, 2, 3, 3, 3, 3, 4, 6
K = 3
Output:
4
public class GetNumberOfK_53 {
    public int getNumberOfK(int[] array, int k) {
        // 二分查找,时间复杂度O(logn),logn是while循环的次数。
        int first = getFirst(array, k);
        int last = getLast(array, k);
//        System.out.println(first + " " + last);
        return last - first + 1;
    }


    //获取k第一次出现的下标
    int getFirst(int[] data, int k) {
        int start = 0, end = data.length - 1;
        int mid = (start + end) / 2;
        while (start <= end) {
            if (data[mid] < k) {
                start = mid + 1;
            } else {
                end = mid - 1;
            }
            mid = (start + end) / 2;
        }
        // start指向第一个小于k的数的下标,while循环结束,返回的start表示k第一次出现的下标。
        // 如果k不存在,则返回第一个大于k的数的下标。
        return start;
    }

    //获取k最后一次出现的下标
    int getLast(int[] data, int k) {
        int start = 0, end = data.length - 1;
        int mid = (start + end) / 2;

        while (start <= end) {
            if (data[mid] <= k) {
                start = mid + 1;
            } else {
                end = mid - 1;
            }
            mid = (start + end) / 2;
        }
        // end指向第一个大于k的数的下标,while循环结束,返回的end表示k最后一次出现的下标。
        // 如果k不存在,则返回第一个小于k的数的下标。
        return end;
    }


    public static void main(String[] args) {
        int[] arr1 = {1, 2, 3, 3, 3, 3, 4, 6};
        int[] arr2 = {3, 3, 3, 3, 4, 5};
        int[] arr3 = {1, 2, 3, 4, 6};
        System.out.println(new GetNumberOfK_53().getNumberOfK(arr1, 3));
        System.out.println(new GetNumberOfK_53().getNumberOfK(arr2, 3));
        System.out.println(new GetNumberOfK_53().getNumberOfK(arr3, 5));
    }
}

53-2 0~n-1中缺失的数字

2020-01-02 15-11-25 的屏幕截图

public class MissingNumber_53_2 {
    //有序数组,使用二分查找
    public int getMissingNumber(int[] arr, int len) {
        //边界处理
        if (arr == null || len <= 0) {
            return -1;
        }

        int left = 0;
        int right = len - 1;
        while (left <= right) {
            int mid = left + ((right - left) >> 1);
            if (arr[mid] != mid) {
                if (mid == 0 || arr[mid - 1] == mid - 1) {
                    return mid;
                }
                right = mid - 1;
            } else {
                left = mid + 1;
            }
        }

        if (left == len) {
            return left;
        }
        return -1;


    }
}

53-3 数组中数值和下标相等的元素

2020-01-02 15-24-35 的屏幕截图

public class NumberEqualIndex_53_3 {
    public int getNumberEqualIndex(int[] arr) {
        if (arr == null || arr.length == 0) {
            return -1;
        }
        int left = 0;
        int right = arr.length - 1;
        while (left <= right) {
            int mid = left + ((right - left) >> 1);
            if (arr[mid] == mid) {
                return mid;
            } else if (arr[mid] > mid) {
                right = mid - 1;
            } else {
                left = mid + 1;
            }
        }

        return -1;

    }
}

54 二叉查找树的第 K 个结点

2020-01-02 16-37-48 的屏幕截图

二叉搜索树的中序遍历是一个递增序列

public class TheKthNode_54 {
    public class TreeNode {
        int val = 0;
        TreeNode left = null;
        TreeNode right = null;

        public TreeNode(int val) {
            this.val = val;

        }

    }


    private int cnt = 0;
    private TreeNode res = null;

    TreeNode KthNode(TreeNode pRoot, int k) {
        InOrder(pRoot, k);

        return res;


    }

    public void InOrder(TreeNode pRoot, int k) {
        if (pRoot == null || cnt > k) {
            return;
        }
        InOrder(pRoot.left, k);
        cnt++;
        if (cnt == k) {
            res = pRoot;
        }

        InOrder(pRoot.right, k);
    }


}

55-1 二叉树的深度

递归遍历,根节点的深度是左子树和右子树中较大的深度+1.

public class BinaryDepth_55 {
    public class TreeNode {
        int val = 0;
        TreeNode left = null;
        TreeNode right = null;

        public TreeNode(int val) {
            this.val = val;

        }
    }

    public int TreeDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        return 1 + Math.max(TreeDepth(root.left), TreeDepth(root.right));

    }
    
}

55-2 平衡二叉树

题目描述:

image-20200103170409234

public class IsBalanced_55_2 {
    public class TreeNode {
        int val = 0;
        TreeNode left = null;
        TreeNode right = null;

        public TreeNode(int val) {
            this.val = val;

        }
    }

    public boolean IsBalanced_Solution(TreeNode root) {
        return getHeight(root) != -1;

    }
    /*
    * -1:表示非平衡二叉树
    * 平衡二叉树左右子树高度之差不超过1,
    * 因此,可以递归遍历左右子树的高度,只要左右子树高度之差大于1,就立即返回-1
    * */
    private int getHeight(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int left = getHeight(root.left);
        if (left == -1) {
            return -1;
        }
        int right = getHeight(root.right);
        if (right == -1) {
            return -1;
        }

        return Math.abs(left - right) > 1 ? -1 : Math.max(left, right) + 1;

    }

}

56-1 数组中只出现一次的两个数字

一个整型数组里除了两个数字只出现一次之外,其他的数字都出现了两次,找出这两个只出现一次的数字。

public class AppearOnceInArray_56 {
    public void FindNumsAppearOnce(int[] array, int num1[], int num2[]) {
/*
        位运算中异或的性质:两个相同数字异或为0,一个数和 0 异或还是它本身。
         因此,array数组中数字异或的结果二进制中的1,表示的是两个只出现一次数字的不同的位。接下来,以结果中最右边的1所在的位数,来分组,
         从而,可以将两个不同的数字划分到不同的分组中。
         例如,{2,4,3,6,3,2,5,5},异或的结果是0010,以最右边1所在的位置划分的结果是{2,3,6,3,2}和{4,5,5}。
         diff保存的是array数组中数字异或的结果.
*/
        int diff = 0;
        for (int num : array) {
            diff ^= num;
        }

        //得到diff最右侧1的位置
        diff = diff & (-diff);
        //划分数组成两部分
        for (int num : array) {
            if ((num & diff) == 0)
                num1[0] ^= num;
            else
                num2[0] ^= num;
        }


    }
}

56-2 数组中唯一只出现一次的数字

一个整型数组里除了1个数字只出现一次之外,其他的数字都出现了3次,找出只出现一次的数字。

public class AppearOnceInArray_56_2 {

    public static int FindNumsAppearOnce(int[] array) throws Exception {
        if (array == null || array.length == 0) {
            throw new Exception("input error!");

        }
        //bitArray保存每个二进制位数组中元素相加的和
        int[] bitArray = new int[32];

        int bitMask = 1;
        for (int i = 31; i >= 0; i--) {
            for (int j = 0; j < array.length; j++) {
                int bit = bitMask & array[j];
                if (bit != 0) {
                    bitArray[i] += 1;
                }
            }
            bitMask = bitMask << 1;
        }

        int res = 0;
        //将res向右移1位,然后对每个二进制位上的数字对3求余。
        for (int i = 0; i < 32; i++) {
            res = res << 1;
            res += bitArray[i] % 3;
        }

        return res;
    }


    public static void main(String[] args) throws Exception {
        int[] arr = {1, 3, 3, 3, 2, 2, 2, 1, 1, 4, 4, 4, 9};
        int res = FindNumsAppearOnce(arr);
        System.out.println(res);
    }
}

57-1 和为s的数字

image-20200105163545563

牛客

题目描述

输入一个递增排序的数组和一个数字 S,在数组中查找两个数,使得他们的和正好是 S,如果有多对数字的和等于 S,输出两个数的乘积最小的。

输出描述

对应每个测试案例,输出两个数,小的先输出。

题解

使用两个指针,分别指向数组的第一个元素和最后一个元素。然后开始遍历,根据条件来移动指针。

import java.util.ArrayList;

public class SumToS_57_1 {
    public ArrayList<Integer> FindNumbersWithSum(int[] array, int sum) {
        int left = 0;
        int right = array.length - 1;
        int min = Integer.MAX_VALUE;
        int res1 = 0;
        int res2 = 0;
        ArrayList arrayList = new ArrayList();

        while (left < right) {
            int curSum = array[left] + array[right];
            if (curSum == sum) {
                if (curSum < min) {
                    res1 = array[left];
                    res2 = array[right];
                    min = array[left] * array[right];
                }
                left++;
                right--;

            } else if (curSum > sum) {
                right--;
            } else {
                left++;
            }


        }

        if (min != Integer.MAX_VALUE) {
            arrayList.add(res1);
            arrayList.add(res2);
        }
        return arrayList;

    }

    public static void main(String[] args) {
        SumToS_57_1 test = new SumToS_57_1();
        int[] array = {1, 2, 3, 4, 5};
        ArrayList<Integer> arrayList = test.FindNumbersWithSum(array, 10);
        System.out.println(arrayList.toString());
    }
}

57-2 和为s的连续正数序列

image-20200105213726180

和57-1类似,这里使用small和big来表示序列的最大值和最小值,通过移动small和big的位置来

import java.lang.reflect.Array;
import java.util.ArrayList;
import java.util.Arrays;

public class SequenceSumToS_57_2 {

    public ArrayList<ArrayList<Integer>> FindContinuousSequence(int sum) {
        int small = 1;
        int big = 2;
        ArrayList<ArrayList<Integer>> arrayLists = new ArrayList<>();
        while (small <= (1 + sum) / 2) {

            int curSum = getCurSum(small, big);
            if (curSum == sum) {
                ArrayList<Integer> arrayList = new ArrayList<>();
                for (int i = small; i <= big; i++) {
                    arrayList.add(i);
                }
                arrayLists.add(arrayList);
                big++;
            } else if (curSum < sum) {
                big++;
            } else {
                small++;
            }
        }
        return arrayLists;

    }

    private int getCurSum(int small, int big) {
        int curSum = (big - small + 1) * (small + big) / 2;
        return curSum;
    }

    public static void main(String[] args) {
        SequenceSumToS_57_2 test=new SequenceSumToS_57_2();
        ArrayList<ArrayList<Integer>> arrayLists= test.FindContinuousSequence(90);
        for (ArrayList<Integer> arrayList:arrayLists) {
            System.out.println(arrayList.toString());

        }

    }
}

58-1 翻转单词顺序列

题目描述

image-20200105230244917

Input:
"I am a student."
Output:
"student. a am I

题解

public class ReverseString_58_1 {
    public String ReverseSentence(String str) {

        if (str != null && str.length() != 0) {
            char[] chars = str.toCharArray();
            reverse(chars, 0, chars.length - 1);
            int begin = 0;
            int end = 0;
            while (begin < chars.length) {
                //划分单词,对每一个单词进行翻转
                if (chars[end] == ' ' || end == chars.length - 1) {
                    int tmp_end = end;
                    if (chars[end] == ' ') {
                        tmp_end = end - 1;
                    }
                    reverse(chars, begin, tmp_end);
                    end++;
                    begin = end;
                } else {
                    end++;

                }
            }

            return String.valueOf(chars);
        }
        return str;

    }

    // 翻转字符串
    public void reverse(char[] chars, int begin, int end) {

        while (begin < end) {
            char tmp = chars[begin];
            chars[begin] = chars[end];
            chars[end] = tmp;
            begin++;
            end--;
        }
    }

    public static void main(String[] args) {
        ReverseString_58_1 test = new ReverseString_58_1();
        System.out.println(test.ReverseSentence("I am a student."));
//        String str=null;
//        String str1="";
//        System.out.println(str.length());
//        System.out.println(str1.length());
    }

}

58-2 左旋转字符串

image-20200106100413228

翻转三次,根据n把字符串分成两部分,然后分别对这两部分进行翻转,最后再对整个字符串进行翻转。

public class RotateLeft_58_2 {
    public String LeftRotateString(String str, int n) {
        //边界条件判断
        if (str != null && str.length() != 0) {
            if (n > 0 && n < str.length()) {
                char[] chars = str.toCharArray();
                reverse(chars, 0, n - 1);
                reverse(chars, n, chars.length - 1);
                reverse(chars, 0, chars.length - 1);
                return String.valueOf(chars);
            }
        }
        return str;


    }

    // 翻转字符串
    public void reverse(char[] chars, int begin, int end) {

        while (begin < end) {
            char tmp = chars[begin];
            chars[begin] = chars[end];
            chars[end] = tmp;
            begin++;
            end--;
        }
    }

    public static void main(String[] args) {
        RotateLeft_58_2 test = new RotateLeft_58_2();
        System.out.println(test.LeftRotateString("abcdefg", 2));
    }


}

59-1 滑动窗口的最大值

image-20200106104201926

import java.util.ArrayDeque;
import java.util.ArrayList;

public class MaxInWindows_59_1 {
    public ArrayList<Integer> maxInWindows(int[] num, int size) {

        ArrayList<Integer> res = new ArrayList<>();
        if (num != null && num.length != 0) {
            if (size > 0 && size <= num.length) {
                int index = 0;
                while (index + size <= num.length) {
                    int max = Integer.MIN_VALUE;
                    for (int i = index; i < size + index; i++) {
                        max = Math.max(max, num[i]);
                    }
                    res.add(max);
                    index++;
                }
            }
        }
        return res;

    }


    public ArrayList<Integer> maxInWindows_2(int[] num, int size) {
        // 用一个双端队列,队列第一个位置保存当前窗口的最大值,每当窗口滑动一次,进行下面的判断:
        // 1.判断当前最大值是否过期
        // 2.新增加的值从队尾开始比较,把所有小于等于它的值从队列中移除,然后再添加新增的值
        ArrayList<Integer> res = new ArrayList<>();
        if (num != null && num.length != 0) {
            if (size > 0 && size <= num.length) {
                ArrayDeque<Integer> deque = new ArrayDeque<>();
                int begin = 0;
                for (int i = 0; i < num.length; i++) {
                    //begin记录滑动窗口的起始位置
                    begin = i - size + 1;
                    if (deque.isEmpty()) {
                        deque.addLast(i);
                    }
                    // 判断当前最大值是否过期
                    else if (begin > deque.peekFirst()) {
                        deque.pollFirst();
                    }
                    // 新增加的值从队尾开始比较,把所有小于等于它的值从队列中移除,然后再添加新增的值
                    while (!deque.isEmpty() && num[deque.peekLast()] <= num[i]) {
                        deque.pollLast();
                    }
                    deque.addLast(i);
                    // 添加当前滑动窗口的最大值
                    if (begin >= 0) {
                        res.add(num[deque.peekFirst()]);
                    }
                }

            }
        }


        return res;
    }

}

59-2 队列的最大值

image-20200106151339581

定义两个双端队列data和maxData,分别用来存储队列的元素和当前队列里的最大值。函数的实现和59-1类似。

import java.util.ArrayDeque;

public class MaxQueue_59_2 {
    public class MaxQueue {
        class InternalData {
            int number;
            int index;

            public InternalData(int number, int index) {
                this.number = number;
                this.index = index;
            }
        }

        ArrayDeque<InternalData> data;
        ArrayDeque<InternalData> maxData;
        int curIndex;

        public MaxQueue() {
            curIndex = 0;

        }

        public int max() throws Exception {
            if (maxData.isEmpty()) {
                throw new Exception("maxData is empty");
            }
            return maxData.pollFirst().number;

        }

        public void push_back(int number) {
            while (!maxData.isEmpty() && maxData.peekLast().number <= number) {
                maxData.pollLast();
            }
            InternalData internalData = new InternalData(number, curIndex);
            data.addLast(internalData);
            maxData.addLast(internalData);
            curIndex++;

        }

        public void pop_front() throws Exception {
            if (maxData.isEmpty()) {
                throw new Exception("maxData is empty");
            }
            if (maxData.peekFirst() == data.peekFirst()) {
                maxData.pollFirst();
            }
            data.pollFirst();

        }


    }


}

60 n个骰子的点数

image-20200106164235263

import java.util.AbstractMap;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;

public class DicesSum_60 {
    //动态规划
    public List<Map.Entry<Integer, Double>> dicesSum(int n) {
        List<Map.Entry<Integer, Double>> res = new ArrayList<>();
        // dp[i][j]表示前i个骰子产生点数j的次数
        long[][] dp = new long[n + 1][6 * n + 1];
        // 设置初始条件
        for (int i = 1; i <= 6; i++) {
            dp[1][i] = 1;
        }

        for (int i = 2; i <= n; i++) {
            for (int j = 1 * i; j <= 6 * n; j++) {
                for (int k = 1; k <= 6 && k <= j; k++) {
                    dp[i][j] += dp[i - 1][j - k];
                }
            }
        }

        double totalNum = Math.pow(6, n);
        double p = 0;
        for (int i = n; i <= 6 * n; i++) {
            p = dp[n][i] / totalNum;
            p = Double.valueOf(String.format("%.2f", p));
            res.add(new AbstractMap.SimpleEntry<>(i, p));
        }
        return res;
    }

    //递归,时间复杂度较高
    public List<Map.Entry<Integer, Double>> dicesSumByDiGui(int n) {
        List<Map.Entry<Integer, Double>> res = new ArrayList<>();
        double totalNum = Math.pow(6, n);
        double p = 0;
        long count = 0;
        for (int i = n; i <= 6 * n; i++) {
            count = getCount(n, i);
            p = count / totalNum;
            // 保留两位小数
            p = Double.valueOf(String.format("%.2f", p));
            res.add(new AbstractMap.SimpleEntry<>(i, p));
        }
        return res;

    }

    public long getCount(int num, int sum) {
        if (num < 1 || sum > 6 * num || sum < num) {
            return 0;
        }
        if (num == 1) {
            return 1;
        }

        long count = getCount(num - 1, sum - 1) + getCount(num - 1, sum - 2)
                + getCount(num - 1, sum - 3) + getCount(num - 1, sum - 4)
                + getCount(num - 1, sum - 5) + getCount(num - 1, sum - 6);

        return count;

    }


    public static void main(String[] args) {
        DicesSum_60 test = new DicesSum_60();
        List<Map.Entry<Integer, Double>> res = test.dicesSum(5);
        for (Map.Entry<Integer, Double> map : res) {
            System.out.println(map.toString());

        }

    }


}

61 扑克牌中的顺子

image-20200106173145153

import java.util.Arrays;

public class ContinousCards_61 {
    public boolean isContinuous(int[] numbers) {
        if (numbers.length < 5) {
            return false;
        }
        Arrays.sort(numbers);
        //统计0的个数
        int countZero = 0;
        for (int i = 0; i < numbers.length; i++) {
            if (numbers[i] == 0)
                countZero++;
        }

        for (int i = countZero; i < numbers.length - 1; i++) {
            //判断对子
            if (numbers[i] == numbers[i + 1]) {
                return false;
            }
            //用0填充缺失的数字
            countZero = countZero - (numbers[i + 1] - numbers[i] - 1);
        }
        //最后只需判断0的个数是否大于等于0,小于0则说明缺失的数字用0去填补(或者数组中没有0)是不够的,因此是不连续的.
        return countZero >= 0;


    }
}

62 圆圈中最后剩下的数字

image-20200106213818599

约瑟夫环问题:https://blog.csdn.net/u011500062/article/details/72855826

public class LastRemaining_62 {
    //使用数组来模拟这个过程,这可以使用链表来模拟
    public int LastRemaining_Solution(int n, int m) {
        if (n == 0 || m == 0) {
            return -1;
        }

        int[] arr = new int[n];
        int count = n;
        int index = 0;
        while (count != 1) {
            //找到第m个数
            for (int i = 1; i < m; index++) {
                if (index == n) {
                    index = 0;
                }
                while (arr[index] == 1) {
                    index++;
                    if (index == n) {
                        index = 0;
                    }
                }
                i++;
            }

            if (index == n) {
                index = 0;
            }
            for (int i = index; i <= n; i++) {
                if (i == n) {
                    i = 0;
                }
                if (arr[i] == 0) {
                    arr[i] = 1;
                    index = i;
                    break;
                }
            }

            count--;
//            System.out.print(index + " ");

        }
        System.out.println();
        for (int i = 0; i < n; i++) {
            if (arr[i] != 1) {
                return i;
            }
        }
        return -1;

    }
    // 约瑟夫环问题
    // 递推公式:f(n,m)=(f(n-1,m)+m)%n
    // 理解这个递推式的核心在于关注胜利者的下标位置是怎么变的。每杀掉一个人,其实就是把这个数组向前移动了 m 位。然后逆过来,就可以得到这个递推式。
    public int LastRemaining_Solution_2(int n, int m) {
        if (n == 0 || m == 0) {
            return -1;
        }
        if (n == 1) {
            return 0;
        }
        return (LastRemaining_Solution_2(n - 1, m) + m) % n;

    }

    public static void main(String[] args) {
        LastRemaining_62 test = new LastRemaining_62();
        System.out.println(test.LastRemaining_Solution(5, 3));

    }
}

63 股票的最大利润

image-20200107104557564

public class MaxProfit_63 {
    public int maxProfit(int[] prices) {
        if (prices == null || prices.length < 2) {
            return 0;
        }
        // min表示前i只股票价格的最小值,maxProfile表示前i只股票获得的最大利润
        int min = prices[0];
        int maxProfit = prices[1] - prices[0];
        for (int i = 1; i < prices.length; i++) {
            maxProfit = maxProfit > prices[i] - min ? maxProfit : prices[i] - min;
            if (prices[i] < min) {
                min = prices[i];
            }
        }

        if (maxProfit < 0) {
            return 0;
        }
        return maxProfit;
    }

    public static void main(String[] args) {
        MaxProfit_63 test = new MaxProfit_63();
        int[] prices = {7, 1, 5, 3, 6, 4};
        System.out.println(test.maxProfit(prices));
    }
}

买卖股票的最佳时机 II

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
示例 2:

输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:

输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。

计算连续递增的子序列之和,时间复杂度O(n)

public class MaxProfit_63_2 {
    public int maxProfit(int[] prices) {
        if (prices == null || prices.length < 2) {
            return 0;
        }
        int maxProfit=0;
        for (int i = 1; i < prices.length; i++) {
            if(prices[i]>prices[i-1]){
                maxProfit+=prices[i]-prices[i-1];
            }
        }
        return maxProfit;

    }
}

64 求 1+2+3+...+n

题目描述
要求不能使用乘除法、for、while、if、else、switch、case 等关键字及条件判断语句 A ? B : C。

65. 不用加减乘除做加法public class Sum_64 {
    public int Sum_Solution(int n) {
        int sum = n;
        boolean b = (n > 0) && ((sum += Sum_Solution(n - 1)) > 0);
        return sum;
    }
}

65 不用加减乘除做加法

题目描述
写一个函数,求两个整数之和,要求不得使用 +、-、*、/ 四则运算符号。
解题思路
a ^ b 表示没有考虑进位的情况下两数的和,(a & b) << 1 就是进位。
递归会终止的原因是 (a & b) << 1 最右边会多一个 0,那么继续递归,进位最右边的 0 会慢慢增多,最后进位会变为0,递归终止。

public class Add_65 {
    /*
    链接:https://www.nowcoder.com/questionTerminal/59ac416b4b944300b617d4f7f111b215?f=discussion
来源:牛客网

首先看十进制是如何做的: 5+7=12,三步走
第一步:相加各位的值,不算进位,得到2。
第二步:计算进位值,得到10. 如果这一步的进位值为0,那么第一步得到的值就是最终结果。

第三步:重复上述两步,只是相加的值变成上述两步的得到的结果2和10,得到12。

同样我们可以用三步走的方式计算二进制值相加: 5-101,7-111 第一步:相加各位的值,不算进位,得到010,二进制每位相加就相当于各位做异或操作,101^111。

第二步:计算进位值,得到1010,相当于各位做与操作得到101,再向左移一位得到1010,(101&111)<<1。

第三步重复上述两步, 各位相加 010^1010=1000,进位值为100=(010&1010)<<1。
     继续重复上述两步:1000^100 = 1100,进位值为0,跳出循环,1100为最终结果。
     */
    public int Add(int num1, int num2) {
        int res=num1^num2;
        int flag=(num1&num2)<<1;
        int tmp;
        while(flag!=0){
            tmp=res;
            res=tmp^flag;
            flag=(tmp&flag)<<1;
        }
        return res;
    }

    //递归
    public int Add_1(int a, int b) {
        return b == 0 ? a : Add(a ^ b, (a & b) << 1);
    }

    public static void main(String[] args) {
        Add_65 test =new Add_65();
        System.out.println(test.Add_1(111,899));
    }
}

66 构建乘积数组

题目描述
给定一个数组 A[0, 1,..., n-1],请构建一个数组 B[0, 1,..., n-1],其中 B 中的元素 B[i]=A[0]A[1]...A[i-1]A[i+1]...A[n-1]。要求不能使用除法。

题解

image-20200107150500896

public class Multiply_66 {
    public int[] multiply(int[] A) {
        if (A == null || A.length == 0) {
            return A;
        }
        int[] B = new int[A.length];
        int[] C = new int[A.length];
        int[] D = new int[A.length];
        C[0] = 1;
        D[D.length - 1] = 1;
        for (int i = 1; i < C.length; i++) {
            C[i] = C[i - 1] * A[i - 1];
        }
        for (int i = D.length - 2; i >= 0; i--) {
            D[i] = D[i + 1] * A[i + 1];
        }

        for (int i = 0; i < B.length; i++) {
            B[i] = C[i] * D[i];
        }

        return B;


    }

}

67 把字符串转换成整数

题目描述
将一个字符串转换成一个整数,字符串不是一个合法的数值则返回 0,要求不能使用字符串转换整数的库函数。

Iuput:
+2147483647
1a33

Output:
2147483647
0

注意边界条件的判断,数字不能超出Integer类型所能表示值的范围

public class StrToInt_67 {
    public int StrToInt(String str) {
        if (str == null || str.length() == 0) {
            return 0;
        }
        
        char[] chars = str.toCharArray();
        long res = 0;

        boolean isNegative = str.charAt(0) == '-';
        for (int i = 0; i < chars.length; i++) {
            if (i == 0 && (chars[i] == '+' || chars[i] == '-')) {
                continue;
            }
            if (chars[i] >= '0' && chars[i] <= '9') {
                res += Math.pow(10, chars.length - i - 1) * (chars[i] - '0');
            } else {
                return 0;
            }

        }

        res = isNegative ? -res : res;

        if (res < Integer.MIN_VALUE || res > Integer.MAX_VALUE) {
            return 0;
        }

        return (int) res;

    }


    public static void main(String[] args) {
        StrToInt_67 test = new StrToInt_67();
        System.out.println(test.StrToInt("-2147483648"));
//        System.out.println(Integer.MAX_VALUE);
//        System.out.println(Integer.MIN_VALUE);
    }
}

68 二叉搜索树的最近公共祖先

给定一个二叉搜索树,找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]

img

示例 1:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6 
解释: 节点 2 和节点 8 的最近公共祖先是 6。

示例 2:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
输出: 2
解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。

说明:

所有节点的值都是唯一的。
p、q 为不同节点且均存在于给定的二叉搜索树中。

算法:

  1. 从根节点开始遍历树
  2. 如果节点 p和节点 q 都在右子树上,那么以右孩子为根节点继续 1 的操作
  3. 如果节点 p 和节点 q 都在左子树上,那么以左孩子为根节点继续 1 的操作
  4. 如果条件 2 和条件 3 都不成立,这就意味着我们已经找到节 p 和节点 q 的 LCA 了。
public class LowestCommonAncestor_68 {
    public class TreeNode {
        int val;
        TreeNode left;
        TreeNode right;

        TreeNode(int x) {
            val = x;
        }

        public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
            if(root==null){
                return root;
            }
            if (root.val > p.val && root.val > q.val) {
                return lowestCommonAncestor(root.left,p,q);
            }
            if(root.val<p.val&&root.val<q.val){
                return lowestCommonAncestor(root.right,p,q);
            }
            return root;
        }

    }
}

posted @ 2019-11-24 22:43  DockerChen  阅读(957)  评论(0编辑  收藏  举报